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SOLUTIONS TO ASSESSED COURSEWORK 1

Exercise 5.6. Let (X,d) be the metric space in question. If y € B,js(x) then d(z,y) < €/2.
For all z € Be/s(y), we have d(y,z) < €/2 and thus d(z, 2) < d(z,y) +d(y,2) < €/2+€/2 =€,
(Here we used the triangle inequality.) Thus z € B.(z). Since z was an arbitrary point of
Be/s(y), it follows that Bej2(y) € Be(x).

Exercise 6.8. From lectures or reading (Proposition 6.18 on p65 of the textbook) we have
that, for a subset A of a metric space (X, d), the closure A is equal to the union of A with the
limit points of A. Thus we need to show that the limit points of B = B;(0,0) are precisely

L= {(;E,y) eR?: d((x,y), (0,0)) = 1}.

Write O = (0,0) € R?. Suppose that z € R? is a limit point of B. Then certainly d(z, O) > 1, for
if d(z,0) < 1 then z € B and so z is not a limit point of B. Suppose now that d(z,0) > 1. Set
e =3(d(0,z)—1). For y € B.(z) we have d(O, z) < d(0,y)+d(y,z) < d(O,y)+3(d(0, z)—1),
hence d(O,y) > 1+ 3(d(0,z) — 1) > 1. In other words, y ¢ B. So if d(z,0) > 1, the ball of
radius € about z contains no point of B, and so z is not a limit point of B. We have shown
that if z is a limit point of B, then z € L. On the other hand, any point of L is obviously a
limit point of B — for instance, x € L is the limit of the sequence z,, = (1 — 1/n)x with z,, € B
— so the set of limit points of B is precisely L, as required.

Exercise 6.25. Let (X, dy and (Y, dy) be metric spaces. We need to show that a map f: X —
Y is continuous if and only if f(z,) — f(x) in Y whenever z,, — = in X. Suppose first that
f is continuous, and that x, — z in X. We need to show that f(z,) — f(z); that is, we
need to show that for all € > 0 there exists N such that f(x,) € B.(f(x)) whenever n > N.
Let € > 0 be arbitrary. Since f is continuous at x, we have that there exists 6 > 0 such that
f(2") € B(f(x)) whenever 2’ € Bs(x). Since z,, — = we have that there exists N such that
x, € Bs(z) whenever n > N. So whenever n > N we have that f(x,) € B.(f(z)), as required.

For the converse, suppose that f(z,) — f(z) in Y whenever z,, — x in X. We need to show
that f is continuous. Suppose not. Then there exists x € X such that f is not continuous
at x; in other words, there exists ¢ > 0 such that, for all 6 > 0 we can find 2’ € Bs(x) with
f(@") & Bc(f(x)). Taking 6 = 1/n we have that there exists z,, € X with z,, € By/,(x) but
f(x,) & B(f(x)). Thus z, — x, but f(x,) 4 f(z), contradicting our original assumption.
Thus f is continuous.

Exercise 7.6. We check the axioms for a topological space. (T1) is obvious. For (T2), we
need to show that given U, V € T we have U NV € T. This is immediate if either U or V is
either & or R; otherwise U = (—00,a), V = (=00, b) for some a, b € R, and

UNV = (—oo,min(a,b)) € T.
For (T3) let U;, i € I, be elements of 7. We need to show that (J,.; U; € T. This is obvious
if U; = R for any ¢, and without loss of generality we may assume that U; # & for all ¢ € [I.
Then U; = (—o00,b;) for some b; € R. Either

B={b:icl}

is bounded above or it is not. If B is bounded above then |J,.; U; = (—00,b) with b = sup B;
otherwise | J,.; U; = R. In either case, | J,., U; € T

el 7t
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Exercise 9.5.

(a) The statement is false. Take X =Y = R with the Euclidean topology, f(x) = €*, and
A =1R. Then A is closed in X, but f(A) = (0,00) is not closed in Y.

(b) The statement is false. Take X = R with the Euclidean topology, A = (0,1), and
B=X. Then ANB = (0,1), but AN B = A and thus AN B = [0, 1].

(c) The statement is false. Let S be any set with |S| > 1. Let X be S equipped with the
discrete topology, and let Y be S equipped with the indiscrete topology. Let f: X — Y
be the identity map; this is continuous because any map out of a topological space with
the discrete topology is continuous. (We proved this in lectures.) Let B = {s}, where
s € S, and regard B as a subset of the topological space Y. Then B =Y, as Y has
the indiscrete topology, so f~%(B) = X. And f~1(B) = f~%(B) = {s}, as X has the
discrete topology, so f=1(B) # f~*(B).

Exercise 9.14.

(a) For any subset B of A, we have that C C A <= C\ B C A. Applying this with

C =4 and B = A we have that
DACA — A\ACA «— ACA < Ais closed.

(b) Suppose that A = @. Then A = A, and since A C A C A4 it follows that A = A and
A= A. Thus A is both open and closed. Coglversely, suppose that A is both open and
closed. Then A= A=A, andso 0A=A\ A=A\ A= 2.

Exercise 8.7 (which was optional and worth no extra marks). It suffices to show that,
for every open subset U of R? and every (z,w) € U, there exist rational numbers z, y and a
positive rational number ¢ such that (z, w) € By(z,y) and By(z,y) C U. Since U is open, there
exists € > 0 such that B.(z,w) C U. Choose rational numbers x and y such that |z — z| < s

€

and |w —y| < 505 Then

d(<zw)(xy)):\/|z—x|2+|w—y]2< i+i:f
s 1818 3

Choose a rational number ¢ such that § < ¢ < §. Then (z,w) € Bys(x,y) C By(x,y), and for
all (/,y') € B,(z,y) we have that

d((z,w), («,y) <d((zw), (z,9)) + d((z,9), («',y)) < % +q< % + % <e

So By(z,y) C Be(z,w) and therefore B,(x,y) C U, as required. Essentially the same argument
proves that

{Bq(:cl, ..oy Ty) g > 0 rational; z4,...,x, rational}

is a basis for the Euclidean topology on RY.



