M2PM5 METRIC SPACES AND TOPOLOGY SPRING 2017

SOLUTIONS TO ASSESSED COURSEWORK 1

Exercise 5.6. Let (X, d) be the metric space in question. If $y \in B_{\epsilon / 2}(x)$ then $d(x, y)<\epsilon / 2$. For all $z \in B_{\epsilon / 2}(y)$, we have $d(y, z)<\epsilon / 2$ and thus $d(x, z)<d(x, y)+d(y, z)<\epsilon / 2+\epsilon / 2=\epsilon$. (Here we used the triangle inequality.) Thus $z \in B_{\epsilon}(x)$. Since z was an arbitrary point of $B_{\epsilon / 2}(y)$, it follows that $B_{\epsilon / 2}(y) \subseteq B_{\epsilon}(x)$.

Exercise 6.8. From lectures or reading (Proposition 6.18 on p65 of the textbook) we have that, for a subset A of a metric space (X, d), the closure \bar{A} is equal to the union of A with the limit points of A. Thus we need to show that the limit points of $B=B_{1}(0,0)$ are precisely

$$
L=\left\{(x, y) \in \mathbb{R}^{2}: d((x, y),(0,0))=1\right\} .
$$

Write $O=(0,0) \in \mathbb{R}^{2}$. Suppose that $z \in \mathbb{R}^{2}$ is a limit point of B. Then certainly $d(z, O) \geq 1$, for if $d(z, O)<1$ then $z \in B$ and so z is not a limit point of B. Suppose now that $d(z, O)>1$. Set $\epsilon=\frac{1}{2}(d(O, z)-1)$. For $y \in B_{\epsilon}(z)$ we have $d(O, z)<d(O, y)+d(y, z)<d(O, y)+\frac{1}{2}(d(O, z)-1)$, hence $d(O, y)>1+\frac{1}{2}(d(O, z)-1)>1$. In other words, $y \notin B$. So if $d(z, O)>1$, the ball of radius ϵ about z contains no point of B, and so z is not a limit point of B. We have shown that if z is a limit point of B, then $z \in L$. On the other hand, any point of L is obviously a limit point of B - for instance, $x \in L$ is the limit of the sequence $x_{n}=(1-1 / n) x$ with $x_{n} \in B$ - so the set of limit points of B is precisely L, as required.

Exercise 6.25. Let (X, d_{X} and $\left(Y, d_{Y}\right)$ be metric spaces. We need to show that a map $f: X \rightarrow$ Y is continuous if and only if $f\left(x_{n}\right) \rightarrow f(x)$ in Y whenever $x_{n} \rightarrow x$ in X. Suppose first that f is continuous, and that $x_{n} \rightarrow x$ in X. We need to show that $f\left(x_{n}\right) \rightarrow f(x)$; that is, we need to show that for all $\epsilon>0$ there exists N such that $f\left(x_{n}\right) \in B_{\epsilon}(f(x))$ whenever $n \geq N$. Let $\epsilon>0$ be arbitrary. Since f is continuous at x, we have that there exists $\delta>0$ such that $f\left(x^{\prime}\right) \in B_{\epsilon}(f(x))$ whenever $x^{\prime} \in B_{\delta}(x)$. Since $x_{n} \rightarrow x$ we have that there exists N such that $x_{n} \in B_{\delta}(x)$ whenever $n \geq N$. So whenever $n \geq N$ we have that $f\left(x_{n}\right) \in B_{\epsilon}(f(x))$, as required.

For the converse, suppose that $f\left(x_{n}\right) \rightarrow f(x)$ in Y whenever $x_{n} \rightarrow x$ in X. We need to show that f is continuous. Suppose not. Then there exists $x \in X$ such that f is not continuous at x; in other words, there exists $\epsilon>0$ such that, for all $\delta>0$ we can find $x^{\prime} \in B_{\delta}(x)$ with $f\left(x^{\prime}\right) \notin B_{\epsilon}(f(x))$. Taking $\delta=1 / n$ we have that there exists $x_{n} \in X$ with $x_{n} \in B_{1 / n}(x)$ but $f\left(x_{n}\right) \notin B_{\epsilon}(f(x))$. Thus $x_{n} \rightarrow x$, but $f\left(x_{n}\right) \nrightarrow f(x)$, contradicting our original assumption. Thus f is continuous.

Exercise 7.6. We check the axioms for a topological space. (T1) is obvious. For (T2), we need to show that given $U, V \in \mathcal{T}$ we have $U \cap V \in \mathcal{T}$. This is immediate if either U or V is either \varnothing or \mathbb{R}; otherwise $U=(-\infty, a), V=(-\infty, b)$ for some $a, b \in \mathbb{R}$, and

$$
U \cap V=(-\infty, \min (a, b)) \in \mathcal{T}
$$

For (T3) let $U_{i}, i \in I$, be elements of \mathcal{T}. We need to show that $\bigcup_{i \in I} U_{i} \in \mathcal{T}$. This is obvious if $U_{i}=\mathbb{R}$ for any i, and without loss of generality we may assume that $U_{i} \neq \varnothing$ for all $i \in I$. Then $U_{i}=\left(-\infty, b_{i}\right)$ for some $b_{i} \in \mathbb{R}$. Either

$$
B=\left\{b_{i}: i \in I\right\}
$$

is bounded above or it is not. If B is bounded above then $\bigcup_{i \in I} U_{i}=(-\infty, b)$ with $b=\sup B$; otherwise $\bigcup_{i \in I} U_{i}=\mathbb{R}$. In either case, $\bigcup_{i \in I} U_{i} \in \mathcal{T}$.

Exercise 9.5.

(a) The statement is false. Take $X=Y=\mathbb{R}$ with the Euclidean topology, $f(x)=e^{x}$, and $A=\mathbb{R}$. Then A is closed in X, but $f(A)=(0, \infty)$ is not closed in Y.
(b) The statement is false. Take $X=\mathbb{R}$ with the Euclidean topology, $A=(0,1)$, and $B=X$. Then $A \cap \bar{B}=(0,1)$, but $A \cap B=A$ and thus $\overline{A \cap B}=[0,1]$.
(c) The statement is false. Let S be any set with $|S|>1$. Let X be S equipped with the discrete topology, and let Y be S equipped with the indiscrete topology. Let $f: X \rightarrow Y$ be the identity map; this is continuous because any map out of a topological space with the discrete topology is continuous. (We proved this in lectures.) Let $B=\{s\}$, where $s \in S$, and regard B as a subset of the topological space Y. Then $\bar{B}=Y$, as Y has the indiscrete topology, so $f^{-1}(\bar{B})=X$. And $\overline{f^{-1}(B)}=f^{-1}(B)=\{s\}$, as X has the discrete topology, so $\overline{f^{-1}(B)} \neq f^{-1}(\bar{B})$.

Exercise 9.14.

(a) For any subset B of A, we have that $C \subseteq A \Longleftrightarrow C \backslash B \subseteq A$. Applying this with $C=\bar{A}$ and $B=\AA$ we have that

$$
\partial A \subseteq A \Longleftrightarrow \bar{A} \backslash \AA \subseteq A \Longleftrightarrow \bar{A} \subseteq A \Longleftrightarrow A \text { is closed. }
$$

(b) Suppose that $\partial A=\varnothing$. Then $\bar{A}=\AA$, and since $\AA \subseteq A \subseteq \bar{A}$ it follows that $\AA=A$ and $A=\bar{A}$. Thus A is both open and closed. Conversely, suppose that A is both open and closed. Then $\AA=A=\bar{A}$, and so $\partial A=\bar{A} \backslash \AA=A \backslash A=\varnothing$.

Exercise 8.7 (which was optional and worth no extra marks). It suffices to show that, for every open subset U of \mathbb{R}^{2} and every $(z, w) \in U$, there exist rational numbers x, y and a positive rational number q such that $(z, w) \in B_{q}(x, y)$ and $B_{q}(x, y) \subseteq U$. Since U is open, there exists $\epsilon>0$ such that $B_{\epsilon}(z, w) \subseteq U$. Choose rational numbers x and y such that $|z-x|<\frac{\epsilon}{3 \sqrt{2}}$ and $|w-y|<\frac{\epsilon}{3 \sqrt{2}}$. Then

$$
d((z, w),(x, y))=\sqrt{|z-x|^{2}+|w-y|^{2}}<\sqrt{\frac{\epsilon^{2}}{18}+\frac{\epsilon^{2}}{18}}=\frac{\epsilon}{3}
$$

Choose a rational number q such that $\frac{\epsilon}{3}<q<\frac{\epsilon}{2}$. Then $(z, w) \in B_{\epsilon / 3}(x, y) \subset B_{q}(x, y)$, and for all $\left(x^{\prime}, y^{\prime}\right) \in B_{q}(x, y)$ we have that

$$
d\left((z, w),\left(x^{\prime}, y^{\prime}\right)\right) \leq d((z, w),(x, y))+d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)<\frac{\epsilon}{3}+q<\frac{\epsilon}{3}+\frac{\epsilon}{2}<\epsilon .
$$

So $B_{q}(x, y) \subset B_{\epsilon}(z, w)$ and therefore $B_{q}(x, y) \subset U$, as required. Essentially the same argument proves that

$$
\left\{B_{q}\left(x_{1}, \ldots, x_{n}\right): q>0 \text { rational } ; x_{1}, \ldots, x_{n} \text { rational }\right\}
$$

is a basis for the Euclidean topology on \mathbb{R}^{N}.

