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Exercise 5.6. Let (X, d) be the metric space in question. If y ∈ Bε/2(x) then d(x, y) < ε/2.
For all z ∈ Bε/2(y), we have d(y, z) < ε/2 and thus d(x, z) < d(x, y) + d(y, z) < ε/2 + ε/2 = ε.
(Here we used the triangle inequality.) Thus z ∈ Bε(x). Since z was an arbitrary point of
Bε/2(y), it follows that Bε/2(y) ⊆ Bε(x).

Exercise 6.8. From lectures or reading (Proposition 6.18 on p65 of the textbook) we have
that, for a subset A of a metric space (X, d), the closure A is equal to the union of A with the
limit points of A. Thus we need to show that the limit points of B = B1(0, 0) are precisely

L =
{

(x, y) ∈ R2 : d
(
(x, y), (0, 0)

)
= 1
}
.

WriteO = (0, 0) ∈ R2. Suppose that z ∈ R2 is a limit point ofB. Then certainly d(z, O) ≥ 1, for
if d(z, O) < 1 then z ∈ B and so z is not a limit point of B. Suppose now that d(z, O) > 1. Set
ε = 1

2
(d(O, z)−1). For y ∈ Bε(z) we have d(O, z) < d(O, y)+d(y, z) < d(O, y)+ 1

2
(d(O, z)−1),

hence d(O, y) > 1 + 1
2
(d(O, z) − 1) > 1. In other words, y 6∈ B. So if d(z,O) > 1, the ball of

radius ε about z contains no point of B, and so z is not a limit point of B. We have shown
that if z is a limit point of B, then z ∈ L. On the other hand, any point of L is obviously a
limit point of B – for instance, x ∈ L is the limit of the sequence xn = (1− 1/n)x with xn ∈ B
– so the set of limit points of B is precisely L, as required.

Exercise 6.25. Let (X, dX and (Y, dY ) be metric spaces. We need to show that a map f : X →
Y is continuous if and only if f(xn) → f(x) in Y whenever xn → x in X. Suppose first that
f is continuous, and that xn → x in X. We need to show that f(xn) → f(x); that is, we
need to show that for all ε > 0 there exists N such that f(xn) ∈ Bε(f(x)) whenever n ≥ N .
Let ε > 0 be arbitrary. Since f is continuous at x, we have that there exists δ > 0 such that
f(x′) ∈ Bε(f(x)) whenever x′ ∈ Bδ(x). Since xn → x we have that there exists N such that
xn ∈ Bδ(x) whenever n ≥ N . So whenever n ≥ N we have that f(xn) ∈ Bε(f(x)), as required.

For the converse, suppose that f(xn)→ f(x) in Y whenever xn → x in X. We need to show
that f is continuous. Suppose not. Then there exists x ∈ X such that f is not continuous
at x; in other words, there exists ε > 0 such that, for all δ > 0 we can find x′ ∈ Bδ(x) with
f(x′) 6∈ Bε(f(x)). Taking δ = 1/n we have that there exists xn ∈ X with xn ∈ B1/n(x) but
f(xn) 6∈ Bε(f(x)). Thus xn → x, but f(xn) 6→ f(x), contradicting our original assumption.
Thus f is continuous.

Exercise 7.6. We check the axioms for a topological space. (T1) is obvious. For (T2), we
need to show that given U , V ∈ T we have U ∩ V ∈ T . This is immediate if either U or V is
either ∅ or R; otherwise U = (−∞, a), V = (−∞, b) for some a, b ∈ R, and

U ∩ V =
(
−∞,min(a, b)

)
∈ T .

For (T3) let Ui, i ∈ I, be elements of T . We need to show that
⋃
i∈I Ui ∈ T . This is obvious

if Ui = R for any i, and without loss of generality we may assume that Ui 6= ∅ for all i ∈ I.
Then Ui = (−∞, bi) for some bi ∈ R. Either

B = {bi : i ∈ I}
is bounded above or it is not. If B is bounded above then

⋃
i∈I Ui = (−∞, b) with b = supB;

otherwise
⋃
i∈I Ui = R. In either case,

⋃
i∈I Ui ∈ T .
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Exercise 9.5.

(a) The statement is false. Take X = Y = R with the Euclidean topology, f(x) = ex, and
A = R. Then A is closed in X, but f(A) = (0,∞) is not closed in Y .

(b) The statement is false. Take X = R with the Euclidean topology, A = (0, 1), and
B = X. Then A ∩B = (0, 1), but A ∩B = A and thus A ∩B = [0, 1].

(c) The statement is false. Let S be any set with |S| > 1. Let X be S equipped with the
discrete topology, and let Y be S equipped with the indiscrete topology. Let f : X → Y
be the identity map; this is continuous because any map out of a topological space with
the discrete topology is continuous. (We proved this in lectures.) Let B = {s}, where
s ∈ S, and regard B as a subset of the topological space Y . Then B = Y , as Y has
the indiscrete topology, so f−1(B) = X. And f−1(B) = f−1(B) = {s}, as X has the

discrete topology, so f−1(B) 6= f−1(B).

Exercise 9.14.

(a) For any subset B of A, we have that C ⊆ A ⇐⇒ C \ B ⊆ A. Applying this with

C = A and B = Å we have that

∂A ⊆ A ⇐⇒ A \ Å ⊆ A ⇐⇒ A ⊆ A ⇐⇒ A is closed.

(b) Suppose that ∂A = ∅. Then A = Å, and since Å ⊆ A ⊆ A it follows that Å = A and
A = A. Thus A is both open and closed. Conversely, suppose that A is both open and
closed. Then Å = A = A, and so ∂A = A \ Å = A \ A = ∅.

Exercise 8.7 (which was optional and worth no extra marks). It suffices to show that,
for every open subset U of R2 and every (z, w) ∈ U , there exist rational numbers x, y and a
positive rational number q such that (z, w) ∈ Bq(x, y) and Bq(x, y) ⊆ U . Since U is open, there
exists ε > 0 such that Bε(z, w) ⊆ U . Choose rational numbers x and y such that |z − x| < ε

3
√
2

and |w − y| < ε
3
√
2
. Then

d
(
(z, w), (x, y)

)
=
√
|z − x|2 + |w − y|2 <

√
ε2

18
+
ε2

18
=
ε

3

Choose a rational number q such that ε
3
< q < ε

2
. Then (z, w) ∈ Bε/3(x, y) ⊂ Bq(x, y), and for

all (x′, y′) ∈ Bq(x, y) we have that

d
(
(z, w), (x′, y′)

)
≤ d
(
(z, w), (x, y)

)
+ d
(
(x, y), (x′, y′)

)
<
ε

3
+ q <

ε

3
+
ε

2
< ε.

So Bq(x, y) ⊂ Bε(z, w) and therefore Bq(x, y) ⊂ U , as required. Essentially the same argument
proves that {

Bq(x1, . . . , xn) : q > 0 rational; x1, . . . , xn rational
}

is a basis for the Euclidean topology on RN .


