
Solutions to Assessed Coursework 2

Exercise 12.11. Recall that a topological space X is connected if the following
condition is satisfied: whenever X = C ∪D with C and D closed subsets of X such
that C ∩D = ∅, then either C or D is empty.

(a) False. A counterexample is the following: X = Y = [0, 3], A = B = [1, 2].
(b) False. A counterexample is the following: X = R, A = (0, 1], B = (−∞, 0]∪

[1,+∞).
(c) True. Let A,B be two closed subsets of the topological space X such that

both A∩B and A∪B are connected. We want to show that A and B are connected.
By symmetry it is enough to show that A is connected. Let’s assume that A = C∪D
where C and D are open and closed in A and such that C∩D = ∅. We need to show
that either C is empty or D is empty. It is clear that A ∩ B = (C ∩ B) ∪ (D ∩ B)
and the union is disjoint. Notice that every set we are considering is a closed subset
of X. Since A∩B is connected, either C ∩B or D ∩B is empty. So we distinguish
two cases.

1. C ∩B = ∅: now we see that A ∪ B = (C ∪ D) ∪ B = C ∪ (D ∪ B) and that
C ∩ (D ∪ B) = ∅. We have decomposed A ∪ B into the disjoint union of
two closed subsets. Since A ∪B is connected, either C or D ∪B is empty.
In particular, either C or D is empty.

2. D ∩B = ∅: this case is completely symmetrical. Use A ∪B = D ∪ (C ∪B).

Exercise 13.4 Recall that for the subsets X ⊆ Rn the following characterisation
holds

(1) X ⊆ Rn is compact ⇐⇒ X is closed and bounded

Recall that for a metric space (X, dX) the following characterisation holds

(2) (X, dX) is compact ⇐⇒ X is sequentially compact

(1) [0, 1) ⊆ R is not compact because it is not closed. Alternatively, notice that
{(−1, 1− 1/n)}n>0 is an open cover of [0, 1) which does not admit a finite
sub cover.

(2) [0,+∞) ⊆ R is not compact because it is not bounded. Alternatively, notice
that {(−1, n)}n>0 is an open cover of [0,+∞) which does not admit a finite
sub cover.

(3) Q ∩ [0, 1] is a metric space with the standard euclidean metric induced
from R. It is not compact as the sequence {xn := 1/3(1 + 1/n)n}n>0 is in
Q ∩ [0, 1] for any n, but the limit e/3 is irrational.

(4) X :=
{

(x, y) ∈ R2 ; x2 + y2 = 1
}
⊂ R2 is compact as it is closed and

bounded:
• X is bounded as it is contained in any ball of radius r > 1, for example
X ⊂ B2((0, 0))

• X is closed as it is the pre-image of a closed set under the continuous
function f : R2 → R, both with the topology induced by the euclidean
metric, defined by f(x, y) = x2 + y2. By definition X = f−1({1}) and
{1} it is obviously closed in (R, d2).

(5) X :=
{

(x, y) ∈ R2 ; |x|+ |y| ≤ 1
}
⊂ R2 is compact as it is closed and

bounded:
• X is bounded as it is contained in any ball of radius r > 1, for example
X ⊂ B2((0, 0))
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• X is closed as it is the pre-image of a closed under the continuous
function f : R2 → R, both with the topology induced by the euclidean
metric, defined by f(x, y) = |x|+ |y|. By definition X = f−1((−∞, 1])
and (−∞, 1] it is obviously closed in (R, d2).

(6) X :=
{

(x, y) ∈ R2 ; x2 + y2 < 1
}
⊂ R2 is not compact as it is not closed.

Alternatively, notice that {Br=1−1/n((0, 0))}n>0 is an open cover of X
which does not admit a finite sub cover.

(7) X :=
{

(x, y) ∈ R2 ; x ≥ 1, 0 ≤ 1 ≤ 1/x
}
⊂ R2 is not compact because it is

not bounded. Alternatively, notice that {(0, n) × R}n>0 is an open cover
of X which does not admit a finite sub cover. In the previous cover the
coordinate x belongs to the first set and the coordinate y to the second.
The set is “unbounded in the x-direction”; for this reason we are not able
to extract the sub cover.

Exercise 13.14 Let (X, d) be a compact metric space. Let f : X → X be a
continuous map without fixed points. Consider the function g : X → R defined by
g(x) = d(f(x), x) for each x ∈ X.

We need to show that g is continuous at any point x0 ∈ X. Fix ε > 0. Since f
is continuous at x0, there exists δ > 0 such that for any x ∈ X, d(x, x0) < δ =⇒
d(f(x), f(x0)) < ε

2 . Now consider the inequalities

|g(x)− g(x0)| = |d(f(x), x)− d(f(x0), x0)|
= |d(f(x), x)− d(f(x), x0) + d(f(x), x0)− d(f(x0), x0)|
≤ |d(f(x), x)− d(f(x), x0)|+ |d(f(x), x0)− d(f(x0), x0)|
≤ d(x, x0) + d(f(x), f(x0)).

This implies that, whenever d(x, x0) < δ we have |g(x) − g(x0)| < d(x, x0) + ε
2 .

Now pick δ∗ = min{δ, ε2}. We have that if d(x, x0) < δ∗ then |g(x) − g(x0)| <
d(x, x0) + ε

2 < δ∗ + ε
2 ≤ ε.

Since g is a real continuous function over the compact topological space X, it
attains its minimum, i.e. there exists a point x̄ ∈ X such that g(x̄) = infX g. Since
f(x̄) 6= x̄, infX g = g(x̄) = d(f(x̄), x̄) > 0. And obviously d(f(x), x) = g(x) ≥
infX g for any x ∈ X.

Exercise 14.11 Suppose the intersection is empty and let Un = X \ Vn. Then
Un is open for each n and Uj ⊆ Uj+1. Moreover

⋃
Un =

⋃
(X \ Vn) = X \

⋂
Vn =

X. Therefore by the compactness of X we only need finitely many of these, so
X = U1 ∪ · · · ∪Um for some m. Since Uj ⊆ Uj+1 it follows that X = Um. However
Um = X \ Vm which would imply Vm is empty, a contradiction.

Exercise 16.8 Let us recall the definition of uniformly continuous function and
of uniformly convergent sequence of functions. We will give the definition and solve
the exercise for real valued functions f : D → R, but everything we say makes sense
for any continuous function between two metric spaces f : (X, dX)→ (Y, dY ).

(a): f : D → R, is uniformly continuous if

∀ε > 0, ∃δ > 0 : ∀x, y ∈ D : d(x, y) < δ =⇒ |f(x)− f(y)| < ε

Notice that the crucial difference with respect to the definition of continuous
function is that here δ does not depend on the point x ∈ D around which
we are looking.
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(b): A sequence {fn} , fn : D → R is uniformly convergent to f : D → R if

∀ε > 0, ∃Nε : ∀n ≥ Nε and ∀x ∈ D, |fn(x)− f(x)| < ε

Here the difference with the pointwise convergence is that here Nε does not
depend on x. Notice that this means that in particular supx∈D |fn(x) −
f(x)| < ε for all n ≥ Nε, i.e. the uniform convergence is just the convergence
in the sup norm.

Now that we recalled both the definition precisely the exercise is very easy. Let us
fix any ε > 0 then

(1) Since fn → f uniformly, there exists Nε such that

∀n ≥ Nε and ∀x ∈ D, |fn(x)− f(x)| < ε/3

(2) Since any fn in the sequence is uniformly continuous, there exists δ > 0
such that

∀x, y ∈ D : d(x, y) < δ =⇒ |fNε(x)− fNε(y)| < ε/3

but then, for all x, y ∈ D such that d(x, y) < δ we have

|f(x)− f(y)| = |f(x)− fNε(x) + fNε(x)− fNε(y) + fNε(y)− f(y)|
≤ |f(x)− fNε(x)|+ |fNε(x)− fNε(y)|+ |fNε(y)− f(y)| < ε/3 + ε/3 + ε/3

where the first inequality is just the triangular inequality and the second follows
from (1) and (2). By definition f is uniformly continuous.

Exercise 17.2. Let us start by proving the following lemma.

Lemma. Let (X, d) be a complete metric space and let Y ⊆ X be a subspace.
Then: Y is a complete metric space with the induced distance if and only if Y is
closed in X.

Proof of the lemma. =⇒) Let us assume that Y is complete. We want to prove
that it is closed. Let (yn) be a sequence of elements of Y which converges to a
point x ∈ X. We want to prove that x ∈ Y . It is easy to see that (yn) is Cauchy
in the metric space X. Therefore it is Cauchy also in the metric space Y . Since Y
is complete, (yn) converges to a point y ∈ Y . But the convergence holds also in X,
so x = y by the uniqueness of the limit.
⇐=) Let (yn) be a Cauchy sequence in Y . It is obviously a Cauchy sequence in

X. Since X is complete, (yn) converges to x ∈ X. Since Y is closed in X, x ∈ Y .
Therefore (yn) is convergent in Y . �

Since Rn is complete, by the lemma, a subspace of Rn is complete if and only if
it is closed in Rn.

(i) {1/n | n ∈ N+} ∪ {0} is closed.
(ii) Q∩ [0, 1] is not closed: take your favourite sequence of rational numbers that

converges to an irrational number, e.g.

1

3

(
1 +

1

n

)n
as n ∈ N+. Indeed, this is a Cauchy sequence in Q∩ [0, 1] which does not converge
in Q ∩ [0, 1].

(iii) X = {(x, y) ∈ R2 | x > 0, y ≥ 1/x} = {(x, y) ∈ R2 | x ≥ 0, xy ≥ 1} is a
closed subset of R2 because it is the preimage of the closed subset [0,+∞)×[1,+∞)
of R2 under the continuous map R2 → R2 defined by (x, y) 7→ (x, xy).

Exercise 16.9. Let X be a compact topological space, let fn : X → R, as n ∈ N,
be a sequence of continuous functions such that fn(x) ≥ fn+1(x) for all n ∈ N and
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x ∈ X. Let us assume that the sequence (fn) converges pointwise to the continuous
function f : X → R. We want to show that the convergence is uniform, i.e.

(3) ∀ε > 0,∃N ∈ N : ∀n ≥ N, ∀x ∈ X, |fn(x)− f(x)| < ε,

Since our sequence is pointwise decreasing, we have that f(x) = infn∈N fn(x)
for any x ∈ X. In particular the function fn − f is always non-negative. So the
condition (3) is equivalent to

(4) ∀ε > 0,∃N ∈ N : ∀n ≥ N, ∀x ∈ X, fn(x)− f(x) < ε.

Now let’s prove (4). Fix ε > 0. For any n ∈ N, consider the set

Uε,n = (fn − f)−1(−∞, ε) = {x ∈ X | fn(x)− f(x) < ε}.
Since f is continuous, also the difference fn − f is a continuous function, hence
Uε,n is open as it is the preimage of the open interval (−∞, ε) under the continuous
function fn − f . Since our sequence is decreasing, it is easy to see that

(5) Uε,0 ⊆ Uε,1 ⊆ Uε,2 ⊆ · · · .
In other words we have an ascending sequence of open subsets of X.

Let’s pick any point x ∈ X. Since the decreasing sequence of real numbers
(fn(x))n converges to f(x), we have that there exists νε,x ∈ N such that

n ≥ νε,x =⇒ fn(x)− f(x) < ε.

This implies that x ∈ Uε,νε,x , i.e. x belongs to one (and actually infinitely many)
member of our ascending sequence (5). Since x was any point of X, we have proved
that

X =
⋃
n∈N

Uε,n,

i.e. the open subsets in (5) constitute an open cover of X.
Since X is compact, it is possible to extract a finite subcover, i.e. X = Uε,N1

∪
· · ·∪Uε,Nk . Set N = max{N1, . . . , Nk}. Then it is clear that X = Uε,N = Uε,N+1 =
· · · . So we have found N ∈ N such that, for any n ≥ N and any x ∈ X, x ∈ Uε,n,
i.e. fn(x)− f(x) < ε. This is exactly (4).


