M2PM5 METRIC SPACES AND TOPOLOGY SPRING 2017

PROBLEM SHEET 1

Exercise 1. Let p be a prime number. Define a function $d: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ by

 $d(m,n) = \begin{cases} 0 & \text{if } m = n \\ \frac{1}{r} & \text{if } m \neq n, \text{ where } m - n = p^{r-1}q \text{ with } q \in \mathbb{Z} \text{ not divisible by } p. \end{cases}$

Show that d is a metric on \mathbb{Z} .

Exercise 2. Let C([a,b]) denote the set of continuous functions from [a,b] to \mathbb{R} , and let $C^1([a,b])$ denote the set of differentiable functions $f: [a,b] \to \mathbb{R}$ such that f' is continuous. Let:

$$d_{\infty}(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)|$$

This defines a metric on both C([a, b]) and $C^1([a, b])$.

(1) Consider the map:

INT :
$$(C([a, b]), d_{\infty}) \rightarrow (C^{1}([a, b]), d_{\infty})$$

 $f \mapsto \int_{a}^{x} f(t) dt$

Is INT continuous?

(2) Consider the map:

DIFF:
$$(C^1([a,b]), d_\infty) \to (C([a,b]), d_\infty)$$

 $f \mapsto f'$

Is DIFF continuous?

Exercise 3. Let (X, d) be a metric space and A be a subset of X. Show that $x \in \partial A$ if and only if, for all $\epsilon > 0$, we have that $B_{\epsilon}(x) \cap A$ and $B_{\epsilon}(x) \cap (X \setminus A)$ are both non-empty.

Exercise 4. Let (X, d) be a metric space and A be a subset of X. For $x \in X$, define $d(x, A) = \inf\{d(x, a) : a \in A\}$

Show that:

- (1) d(x, A) = 0 if and only if $x \in \overline{A}$.
- (2) for all $y \in X$, $d(x, A) \leq d(x, y) + d(y, A)$.
- (3) the map $x \mapsto d(x, A)$ defines a continuous function from X to \mathbb{R} .