M2PM5 METRIC SPACES AND TOPOLOGY SPRING 2017

PROBLEM SHEET 5

Exercise 1. Let (X, \mathcal{T}) be a topological space. Let ∞ be an object not in X, and set: $\check{X} = X \cup \{\infty\}$ $\check{\mathcal{T}} = \mathcal{T} \cup \{ V \cup \{ \infty \} : V \subseteq X \text{ such that } X \setminus V \text{ is compact and closed} \}$

- (1) Show that $\check{\mathcal{T}}$ is a topology on \check{X} .
- (2) Show that the topological space $(X, \check{\mathcal{T}})$ is compact.
- (3) Show that the topological space (X, \mathcal{T}) contains (X, \mathcal{T}) as a subspace.
- (4) Suppose that $X = \mathbb{R}$ with the usual topology. What is $(\check{X}, \check{\mathcal{T}})$?
- (5) Suppose that $X = \mathbb{R}^2$ with the usual topology. What is $(\check{X}, \check{\mathcal{T}})$?

The space $(\check{X}, \check{\mathcal{T}})$ is called the *one-point compactification* of X.

Exercise 2.

- (1) Show that the annulus $\{(x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 2\}$ is path connected. (2) Show that the region $\{(x, y) \in \mathbb{R}^2 : x < 0 \text{ or } x > 1\}$ is not path-connected.

Exercise 3. Consider the *topologist's sine curve* T, which is the subspace of \mathbb{R}^2 defined by:

$$T = \{(0,0)\} \cup \{(x,\sin x^{-1}) : x \in (0,\infty)\}$$

- (1) Draw a picture of T.
- (2) Show that T is connected.
- (3) Show that T is not path-connected.