M2PM5 METRIC SPACES AND TOPOLOGY SPRING 2017

PROBLEM SHEET 8

Exercise 1. Consider the following functions $f_n : [0, 1] \to \mathbb{R}$. In which case does the sequence $(f_n)_{n \ge 1}$ converge uniformly on [0, 1]?

(1)
$$f_n(x) = \frac{x}{1+nx}$$

(2) $f_n(x) = \frac{x^n}{1+x^n}$
(3) $f_n(x) = nx(1-x^2)^{n^2}$

Exercise 2. Construct functions $f_n : \mathbb{R} \to \mathbb{R}$ such that none of the f_n is continuous at $0 \in \mathbb{R}$ but that $(f_n)_{n \ge 1}$ converges uniformly on \mathbb{R} to a continuous function.

Exercise 3. Let X be the metric space $[1, \infty)$, considered as a subspace of \mathbb{R} . Let $f : X \to X$ be the map $x \mapsto x + x^{-1}$. Show that:

- (1) X is complete;
- (2) |f(x) f(y)| < |x y| for all $x, y \in X$;
- (3) f has no fixed point.

Exercise 4. Recall the definition of homotopy from Problem Sheet 6. We proved there that setting $\gamma_1 \sim \gamma_2$ if and only if γ_1 is homotopic to γ_2 defines an equivalence relation on paths. Let X be a topological space, and choose a point $x_0 \in X$. The set

$$\pi_1(X, x_0) = \{ [\gamma] : \gamma \text{ is a loop in } X \text{ based at } x_0 \}$$

is called the *fundamental group* of X with basepoint x_0 . The group operation * is defined by setting the product of loops γ_1 and γ_2 to be the loop $\gamma_1 * \gamma_2$ given by

$$\gamma_1 * \gamma_2(t) = \begin{cases} \gamma_1(2t) & 0 \le t \le \frac{1}{2} \\ \gamma_2(2t-1) & \frac{1}{2} \le t \le 1. \end{cases}$$

Show that:

- setting $[\gamma_1] * [\gamma_2] = [\gamma_1 * \gamma_2]$ gives a well-defined operation * on $\pi_1(X, x_0)$.
- the constant loop e_{x₀} given by e_{x₀}(t) = x₀ is an identity element for *.
 if we define the loop γ⁻¹ by γ⁻¹(t) = γ(1-t) then [γ]*[γ⁻¹] = [e_{x₀}] and [γ⁻¹]*[γ] = [e_{x₀}]. • the product * on $\pi_1(X, x_0)$ is associative.

This shows that the fundamental group is, in fact, a group.

Exercise 5. Let X and Y be topological spaces, let x_0 be a point of X, let $f: X \to Y$ be a continuous map, and let $y_0 = f(x_0)$. Show that setting $f_{\star}[\gamma] = [f \circ \gamma]$ gives a well-defined group homomorphism $f_{\star} \colon \pi_1(X, x_0) \to \pi_1(Y, y_0).$