M2PM5 METRIC SPACES AND TOPOLOGY SPRING 2017

EXTRA PROBLEM SHEET

Exercise 1. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Define

$$
\begin{aligned}
d_{p}:(X \times Y) \times(X \times Y) & \longrightarrow \mathbb{R} \\
\quad\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & \longmapsto \sqrt[p]{d_{X}\left(x_{1}, x_{2}\right)^{p}+d_{Y}\left(y_{1}, y_{2}\right)^{p}}
\end{aligned}
$$

A generalization of the Cauchy-Schwartz inequality, which you may assume without proof, is Hölder's inequality. This states that, if $p \in[1, \infty)$ and $q \in[1, \infty)$ are such that $1 / p+1 / q=1$, then:

$$
\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|b_{i}\right|^{q}\right)^{1 / q}
$$

for all $a, b \in \mathbb{R}^{n}$. Use this to show that d_{p} is a metric on $X \times Y$.
Solution. (M1) and (M2) are straightforward and I will omit them. For (M3), let $x_{1}, x_{2}, x_{3} \in$ X and $y_{1}, y_{2}, y_{3} \in Y$ be arbitrary. We need to prove that:

$$
\sqrt[p]{d_{X}\left(x_{1}, x_{3}\right)^{p}+d_{Y}\left(y_{1}, y_{3}\right)^{p}} \leq \sqrt[p]{d_{X}\left(x_{1}, x_{2}\right)^{p}+d_{Y}\left(y_{1}, y_{2}\right)^{p}}+\sqrt[p]{d_{X}\left(x_{2}, x_{3}\right)^{p}+d_{Y}\left(y_{2}, y_{3}\right)^{p}}
$$

Since everything is real and non-negative, this is equivalent to:

$$
d_{X}\left(x_{1}, x_{3}\right)^{p}+d_{Y}\left(y_{1}, y_{3}\right)^{p} \leq\left(\sqrt[p]{d_{X}\left(x_{1}, x_{2}\right)^{p}+d_{Y}\left(y_{1}, y_{2}\right)^{p}}+\sqrt[p]{d_{X}\left(x_{2}, x_{3}\right)^{p}+d_{Y}\left(y_{2}, y_{3}\right)^{p}}\right)^{p}
$$

But

$$
\begin{aligned}
d_{X}\left(x_{1}, x_{3}\right)^{p}+d_{Y}\left(y_{1}, y_{3}\right)^{p} \leq & \left(d_{X}\left(x_{1}, x_{2}\right)+d_{X}\left(x_{2}, x_{3}\right)\right)^{p}+\left(d_{Y}\left(y_{1}, y_{2}\right)+d_{Y}\left(y_{2}, y_{3}\right)\right)^{p} \\
= & d_{X}\left(x_{1}, x_{2}\right)\left(d_{X}\left(x_{1}, x_{2}\right)+d_{X}\left(x_{2}, x_{3}\right)\right)^{p-1}+ \\
& d_{X}\left(x_{2}, x_{3}\right)\left(d_{X}\left(x_{1}, x_{2}\right)+d_{X}\left(x_{2}, x_{3}\right)\right)^{p-1}+ \\
& d_{Y}\left(y_{1}, y_{2}\right)\left(d_{Y}\left(y_{1}, y_{2}\right)+d_{Y}\left(y_{2}, y_{3}\right)\right)^{p-1}+ \\
& d_{Y}\left(y_{2}, y_{3}\right)\left(d_{Y}\left(y_{1}, y_{2}\right)+d_{Y}\left(y_{2}, y_{3}\right)\right)^{p-1}
\end{aligned}
$$

Consider the first and third terms here, and apply Hölder's inequality (with $q=p /(p-1)$, so that $1 / p+1 / q=1$):

$$
\begin{aligned}
& \quad d_{X}\left(x_{1}, x_{2}\right)\left(d_{X}\left(x_{1}, x_{2}\right)+d_{X}\left(x_{2}, x_{3}\right)\right)^{p-1}+d_{Y}\left(y_{1}, y_{2}\right)\left(d_{Y}\left(y_{1}, y_{2}\right)+d_{Y}\left(y_{2}, y_{3}\right)\right)^{p-1} \leq \\
& \left(d_{X}\left(x_{1}, x_{2}\right)^{p}+d_{Y}\left(y_{1}, y_{2}\right)^{p}\right)^{1 / p}\left(\left(d_{X}\left(x_{1}, x_{2}\right)+d_{X}\left(x_{2}, x_{3}\right)\right)^{(p-1) q}+\left(d_{Y}\left(y_{1}, y_{2}\right)+d_{Y}\left(y_{2}, y_{3}\right)\right)^{(p-1) q}\right)^{1 / q}
\end{aligned}
$$

Do the same thing with the second and fourth terms above, and use $(p-1) q=p$ and $1 / q=$ $1-1 / p$, to find:

$$
\begin{aligned}
& \left(d_{X}\left(x_{1}, x_{2}\right)+d_{X}\left(x_{2}, x_{3}\right)\right)^{p}+\left(d_{Y}\left(y_{1}, y_{2}\right)+d_{Y}\left(y_{2}, y_{3}\right)\right)^{p} \leq \\
& \left(d_{X}\left(x_{1}, x_{2}\right)^{p}+d_{Y}\left(y_{1}, y_{2}\right)^{p}\right)^{1 / p}\left(\left(d_{X}\left(x_{1}, x_{2}\right)+d_{X}\left(x_{2}, x_{3}\right)\right)^{p}+\left(d_{Y}\left(y_{1}, y_{2}\right)+d_{Y}\left(y_{2}, y_{3}\right)\right)^{p}\right)^{1-1 / p} \\
& +\left(d_{X}\left(x_{2}, x_{3}\right)^{p}+d_{Y}\left(y_{2}, y_{3}\right)^{p}\right)^{1 / p}\left(\left(d_{X}\left(x_{1}, x_{2}\right)+d_{X}\left(x_{2}, x_{3}\right)\right)^{p}+\left(d_{Y}\left(y_{1}, y_{2}\right)+d_{Y}\left(y_{2}, y_{3}\right)\right)^{p}\right)^{1-1 / p}
\end{aligned}
$$

Cancelling common factors and rearranging gives:

$$
\begin{aligned}
\left(\left(d_{X}\left(x_{1}, x_{2}\right)+d_{X}\left(x_{2}, x_{3}\right)\right)^{p}+\right. & \left.\left(d_{Y}\left(y_{1}, y_{2}\right)+d_{Y}\left(y_{2}, y_{3}\right)\right)^{p}\right)^{1 / p} \leq \\
& \left(d_{X}\left(x_{1}, x_{2}\right)^{p}+d_{Y}\left(y_{1}, y_{2}\right)^{p}\right)^{1 / p}+\left(d_{X}\left(x_{2}, x_{3}\right)^{p}+d_{Y}\left(y_{2}, y_{3}\right)^{p}\right)^{1 / p}
\end{aligned}
$$

Or in other words:

$$
\begin{aligned}
\left(d_{X}\left(x_{1}, x_{2}\right)+d_{X}\left(x_{2}, x_{3}\right)\right)^{p} & +\left(d_{Y}\left(y_{1}, y_{2}\right)+d_{Y}\left(y_{2}, y_{3}\right)\right)^{p} \leq \\
& \left(\left(d_{X}\left(x_{1}, x_{2}\right)^{p}+d_{Y}\left(y_{1}, y_{2}\right)^{p}\right)^{1 / p}+\left(d_{X}\left(x_{2}, x_{3}\right)^{p}+d_{Y}\left(y_{2}, y_{3}\right)^{p}\right)^{1 / p}\right)^{p}
\end{aligned}
$$

So:

$$
\begin{aligned}
d_{X}\left(x_{1}, x_{3}\right)^{p}+d_{Y}\left(y_{1}, y_{3}\right)^{p} & \leq\left(d_{X}\left(x_{1}, x_{2}\right)+d_{X}\left(x_{2}, x_{3}\right)\right)^{p}+\left(d_{Y}\left(y_{1}, y_{2}\right)+d_{Y}\left(y_{2}, y_{3}\right)\right)^{p} \\
& \leq\left(\sqrt[p]{d_{X}\left(x_{1}, x_{2}\right)^{p}+d_{Y}\left(y_{1}, y_{2}\right)^{p}}+\sqrt[p]{d_{X}\left(x_{2}, x_{3}\right)^{p}+d_{Y}\left(y_{2}, y_{3}\right)^{p}}\right)^{p}
\end{aligned}
$$

as required. Thus (M3) holds.
Exercise 2. Let X denote the set of all continuous functions from the interval $[-1,1]$ to \mathbb{R}. Define:

$$
\begin{aligned}
d_{1}: X \times X & \longrightarrow \mathbb{R} & d_{\infty}: X \times X & \longrightarrow \mathbb{R} \\
(f, g) & \longmapsto \int_{-1}^{1} \mid(f(t)-g(t) \mid d t & (f, g) & \longmapsto \sup _{t \in[-1,1]}|f(t)-g(t)|
\end{aligned}
$$

Both (X, d_{1}) and (X, d_{∞}) are metric spaces. (You do not need to prove this.) Consider the function

$$
\begin{aligned}
\mathrm{ev}_{0}: X & \longrightarrow \mathbb{R} \\
f & \longmapsto f(0)
\end{aligned}
$$

Is ev_{0} a continuous function on $\left(X, d_{1}\right)$? Is ev_{0} a continuous function on $\left(X, d_{\infty}\right)$?
Solution. ev_{0} is not a continuous function on $\left(X, d_{1}\right)$. Let $g:[-1,1] \rightarrow \mathbb{R}$ be the zero function, and define $f_{n}:[-1,1] \rightarrow \mathbb{R}$ to be the piecewise-linear function with the following graph.

Then $d_{1}\left(f_{n}, g\right)=\int_{-1}^{1} f_{n}(t) d t=\frac{1}{n}$, so $f_{n} \rightarrow g$ in $\left(X, d_{1}\right)$ as $n \rightarrow \infty$. But $\mathrm{ev}_{0}\left(f_{n}\right)=1$, and $\operatorname{ev}_{0}(g)=0$, so $\mathrm{ev}_{0}\left(f_{n}\right) \nrightarrow \mathrm{ev}_{0}(g)$ as $n \rightarrow \infty$. Thus ev_{0} is not continuous at g.

On the other hand, ev_{0} is a continuous function on $\left(X, d_{\infty}\right)$. Let $f \in X$ be arbitrary. We need to show that ev_{0} is continuous at f. Let $\epsilon>0$ be arbitrary. Set $\delta=\epsilon$. Then for all $g \in X$ such that $d_{\infty}(f, g)<\delta$, we have $\left|\operatorname{ev}_{0}(f)-\operatorname{ev}_{0}(g)\right|=|f(0)-g(0)| \leq \sup _{t \in[-1,1]}|f(t)-g(t)|<\epsilon$. So ev_{0} is continuous at f.

