M2PM5 METRIC SPACES AND TOPOLOGY SPRING 2017

EXTRA PROBLEM SHEET

Exercise 1. Let (X, d_X) and (Y, d_Y) be metric spaces. Define

$$d_p \colon (X \times Y) \times (X \times Y) \longrightarrow \mathbb{R}$$
$$((x_1, y_1), (x_2, y_2)) \longmapsto \sqrt[p]{d_X(x_1, x_2)^p} + d_Y(y_1, y_2)^p$$

A generalization of the Cauchy–Schwartz inequality, which you may assume without proof, is *Hölder's inequality*. This states that, if $p \in [1, \infty)$ and $q \in [1, \infty)$ are such that 1/p + 1/q = 1, then:

$$\Big|\sum_{i=1}^{n} a_i b_i\Big| \le \Big(\sum_{i=1}^{n} |a_i|^p\Big)^{1/p} \Big(\sum_{i=1}^{n} |b_i|^q\Big)^{1/q}$$

for all $a, b \in \mathbb{R}^n$. Use this to show that d_p is a metric on $X \times Y$.

Solution. (M1) and (M2) are straightforward and I will omit them. For (M3), let $x_1, x_2, x_3 \in X$ and $y_1, y_2, y_3 \in Y$ be arbitrary. We need to prove that:

$$\sqrt[p]{d_X(x_1, x_3)^p + d_Y(y_1, y_3)^p} \le \sqrt[p]{d_X(x_1, x_2)^p + d_Y(y_1, y_2)^p} + \sqrt[p]{d_X(x_2, x_3)^p + d_Y(y_2, y_3)^p}$$

Since everything is real and non-negative, this is equivalent to:

$$d_X(x_1, x_3)^p + d_Y(y_1, y_3)^p \le \left(\sqrt[p]{d_X(x_1, x_2)^p} + d_Y(y_1, y_2)^p + \sqrt[p]{d_X(x_2, x_3)^p} + d_Y(y_2, y_3)^p\right)^p$$

But

$$\begin{aligned} d_X(x_1, x_3)^p + d_Y(y_1, y_3)^p &\leq (d_X(x_1, x_2) + d_X(x_2, x_3))^p + (d_Y(y_1, y_2) + d_Y(y_2, y_3))^p \\ &= d_X(x_1, x_2)(d_X(x_1, x_2) + d_X(x_2, x_3))^{p-1} + \\ & d_X(x_2, x_3)(d_X(x_1, x_2) + d_X(x_2, x_3))^{p-1} + \\ & d_Y(y_1, y_2)(d_Y(y_1, y_2) + d_Y(y_2, y_3))^{p-1} + \\ & d_Y(y_2, y_3)(d_Y(y_1, y_2) + d_Y(y_2, y_3))^{p-1} \end{aligned}$$

Consider the first and third terms here, and apply Hölder's inequality (with q = p/(p-1), so that 1/p + 1/q = 1):

$$d_X(x_1, x_2)(d_X(x_1, x_2) + d_X(x_2, x_3))^{p-1} + d_Y(y_1, y_2)(d_Y(y_1, y_2) + d_Y(y_2, y_3))^{p-1} \le (d_X(x_1, x_2)^p + d_Y(y_1, y_2)^p)^{1/p} ((d_X(x_1, x_2) + d_X(x_2, x_3))^{(p-1)q} + (d_Y(y_1, y_2) + d_Y(y_2, y_3))^{(p-1)q})^{1/q}$$

Do the same thing with the second and fourth terms above, and use (p-1)q = p and 1/q = 1 - 1/p, to find:

$$(d_X(x_1, x_2) + d_X(x_2, x_3))^p + (d_Y(y_1, y_2) + d_Y(y_2, y_3))^p \leq (d_X(x_1, x_2)^p + d_Y(y_1, y_2)^p)^{1/p} \Big((d_X(x_1, x_2) + d_X(x_2, x_3))^p + (d_Y(y_1, y_2) + d_Y(y_2, y_3))^p \Big)^{1-1/p} + (d_X(x_2, x_3)^p + d_Y(y_2, y_3)^p)^{1/p} \Big((d_X(x_1, x_2) + d_X(x_2, x_3))^p + (d_Y(y_1, y_2) + d_Y(y_2, y_3))^p \Big)^{1-1/p}$$

Cancelling common factors and rearranging gives:

$$\left(\left(d_X(x_1, x_2) + d_X(x_2, x_3) \right)^p + \left(d_Y(y_1, y_2) + d_Y(y_2, y_3) \right)^p \right)^{1/p} \le \left(d_X(x_1, x_2)^p + d_Y(y_1, y_2)^p \right)^{1/p} + \left(d_X(x_2, x_3)^p + d_Y(y_2, y_3)^p \right)^{1/p}$$

Or in other words:

$$(d_X(x_1, x_2) + d_X(x_2, x_3))^p + (d_Y(y_1, y_2) + d_Y(y_2, y_3))^p \le \left(\left(d_X(x_1, x_2)^p + d_Y(y_1, y_2)^p \right)^{1/p} + \left(d_X(x_2, x_3)^p + d_Y(y_2, y_3)^p \right)^{1/p} \right)^p$$

So:

$$d_X(x_1, x_3)^p + d_Y(y_1, y_3)^p \le (d_X(x_1, x_2) + d_X(x_2, x_3))^p + (d_Y(y_1, y_2) + d_Y(y_2, y_3))^p \le \left(\sqrt[p]{d_X(x_1, x_2)^p} + d_Y(y_1, y_2)^p} + \sqrt[p]{d_X(x_2, x_3)^p} + d_Y(y_2, y_3)^p\right)^p$$

required. Thus (M3) holds. \Box

as required. Thus (M3) holds.

Exercise 2. Let X denote the set of all continuous functions from the interval [-1, 1] to \mathbb{R} . Define:

$$d_1 \colon X \times X \longrightarrow \mathbb{R} \qquad \qquad d_\infty \colon X \times X \longrightarrow \mathbb{R}$$
$$(f,g) \longmapsto \int_{-1}^1 |(f(t) - g(t))| dt \qquad \qquad (f,g) \longmapsto \sup_{t \in [-1,1]} |f(t) - g(t)|$$

Both (X, d_1) and (X, d_{∞}) are metric spaces. (You do not need to prove this.) Consider the function

$$ev_0 \colon X \longrightarrow \mathbb{R}$$
$$f \longmapsto f(0)$$

Is ev₀ a continuous function on (X, d_1) ? Is ev₀ a continuous function on (X, d_{∞}) ?

Solution. ev₀ is not a continuous function on (X, d_1) . Let $g: [-1, 1] \to \mathbb{R}$ be the zero function, and define $f_n: [-1,1] \to \mathbb{R}$ to be the piecewise-linear function with the following graph.

Then $d_1(f_n, g) = \int_{-1}^1 f_n(t) dt = \frac{1}{n}$, so $f_n \to g$ in (X, d_1) as $n \to \infty$. But $ev_0(f_n) = 1$, and $\operatorname{ev}_0(g) = 0$, so $\operatorname{ev}_0(f_n) \not\to \operatorname{ev}_0(g)$ as $n \to \infty$. Thus ev_0 is not continuous at g.

On the other hand, ev_0 is a continuous function on (X, d_∞) . Let $f \in X$ be arbitrary. We need to show that ev_0 is continuous at f. Let $\epsilon > 0$ be arbitrary. Set $\delta = \epsilon$. Then for all $g \in X$ such that $d_{\infty}(f,g) < \delta$, we have $|\operatorname{ev}_0(f) - \operatorname{ev}_0(g)| = |f(0) - g(0)| \le \sup_{t \in [-1,1]} |f(t) - g(t)| < \epsilon$. So ev_0 is continuous at f.