M2PM5 METRIC SPACES AND TOPOLOGY SPRING 2017

PROBLEM SHEET 1

Exercise 1. Let p be a prime number. Define a function $d: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ by

$$d(m,n) = \begin{cases} 0 & \text{if } m = n \\ \frac{1}{r} & \text{if } m \neq n, \text{ where } m - n = p^{r-1}q \text{ with } q \in \mathbb{Z} \text{ not divisible by } p. \end{cases}$$

Show that d is a metric on \mathbb{Z} .

Solution. We need to prove:

M1: $d(m,n) \ge 0$ with equality iff m = n; **M2:** d(m,n) = d(n,m) for all $n, m \in \mathbb{Z}$; **M3:** $d(l,n) \le d(l,m) + d(m,n)$ for all $l, m, n \in \mathbb{Z}$.

M1 is obvious. M2 is straightforward. For M3, let $l - m = p^{r-1}q$ and $m - n = p^{s-1}q'$, with q and q' coprime to p. Then d(l,m) = 1/r, d(m,n) = 1/s, and $l - n = p^{t-1}q''$ with q'' coprime to p and $t \ge \min(r,s)$. So $d(l,n) \le 1/\min(r,s) \le 1/r + 1/s$, which is (M3).

Exercise 2. Let C([a, b]) denote the set of continuous functions from [a, b] to \mathbb{R} , and let $C^1([a, b])$ denote the set of differentiable functions $f: [a, b] \to \mathbb{R}$ such that f' is continuous. Let:

$$d_{\infty}(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)|$$

This defines a metric on both C([a, b]) and $C^{1}([a, b])$.

(1) Consider the map:

INT :
$$(C([a, b]), d_{\infty}) \rightarrow (C^{1}([a, b]), d_{\infty})$$

 $f \mapsto \int_{a}^{x} f(t) dt$

Is INT continuous?

(2) Consider the map:

DIFF:
$$(C^1([a,b]), d_\infty) \to (C([a,b]), d_\infty)$$

 $f \mapsto f'$

Is DIFF continuous?

Solution. INT is continuous. We have that

$$d_{\infty}\left(\operatorname{INT}(f), \operatorname{INT}(g)\right) = \sup_{x \in [a,b]} \left| \int_{a}^{x} f(t) - g(t) \, dt \right|$$
$$\leq \sup_{x \in [a,b]} \left(|x - a| \sup_{y \in [a,x]} |f(t) - g(t)| \right)$$
$$\leq |b - a| \, d_{\infty}(f,g)$$

So for any $\epsilon > 0$, if we set $\delta = \epsilon/(b-a)$ then $d_{\infty}(INT(f), INT(g)) < \epsilon$ whenever $d_{\infty}(f, g) < \delta$.

DIFF is not continuous. For example, let us assume for simplicity that $0 \in [a, b]$. Set g to be the zero function and, for any $\delta > 0$, set $f(x) = \delta \sin(x/\delta)$. Then $f \in B_{\delta}(g)$, but

$$d_{\infty}\left(\mathrm{DIFF}(f), \mathrm{DIFF}(g)\right) = \sup_{x \in [a,b]} |\cos(x/\delta)| = 1$$

So DIFF is not continuous at g.

Exercise 3. Let (X, d) be a metric space and A be a subset of X. Show that $x \in \partial A$ if and only if, for all $\epsilon > 0$, we have that $B_{\epsilon}(x) \cap A$ and $B_{\epsilon}(x) \cap (X \setminus A)$ are both non-empty.

Solution. Recall that $\partial A = \overline{A} \setminus \mathring{A}$. Suppose that $x \in \partial A$. Then $x \in \overline{A}$, and hence $B_{\epsilon}(x) \cap A$ is non-empty for all $\epsilon > 0$. Also $x \notin \mathring{A}$, so there does not exist $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq A$. Put differently: $B_{\epsilon}(x) \cap (X \setminus A)$ is non-empty for all $\epsilon > 0$. We have shown that if $x \in \partial A$ then, for all $\epsilon > 0$, both $B_{\epsilon}(x) \cap A$ and $B_{\epsilon}(x) \cap (X \setminus A)$ are non-empty.

For the converse, the fact that $B_{\epsilon}(x) \cap A$ is non-empty for all $\epsilon > 0$ implies that $x \in \overline{A}$. And the fact that $B_{\epsilon}(x) \cap (X \setminus A)$ is non-empty for all $\epsilon > 0$ shows that there is no $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq A$. In other words, $x \notin A$. So $x \in \overline{A} \setminus A = \partial A$.

Exercise 4. Let (X, d) be a metric space and A be a subset of X. For $x \in X$, define

$$d(x, A) = \inf\{d(x, a) : a \in A\}$$

Show that:

(1) d(x, A) = 0 if and only if $x \in \overline{A}$.

(2) for all $y \in X$, $d(x, A) \leq d(x, y) + d(y, A)$.

(3) the map $x \mapsto d(x, A)$ defines a continuous function from X to \mathbb{R} .

Solution. (1) Suppose that d(x, A) = 0. Let (a_n) be a sequence of points in A such that $d(x, a_n) < 1/n$. Then, for all $\epsilon > 0$, the ball $B_{\epsilon}(x)$ contains some $a_n \in A$, and so $x \in \overline{A}$. Conversely, if $x \in \overline{A}$ then we can find a sequence (a_n) of points of A such that $a_n \in B_{1/n}(x)$, and so $\inf\{d(x, a) : a \in A\} \le \inf\{d(x, a_n) : n \in \mathbb{N}\} = 0$. Thus d(x, A) = 0.

(2) For all $a \in A$ we have

$$d(x,a) \le d(x,y) + d(y,a)$$

Thus

$$\inf_{a' \in A} d(x, a') \le d(x, y) + d(y, a)$$

or in other words

$$d(x, A) \le d(x, y) + d(y, a).$$

This holds for all $a \in A$, so therefore

$$d(x, A) \le \inf_{a \in A} \left(d(x, y) + d(y, a) \right) = d(x, y) + d(y, A).$$

(3) From part (2) we have that

 $d(x,A) - d(y,A) \le d(x,y)$

and, switching x and y, also that

$$d(y, A) - d(x, A) \le d(x, y)$$

Thus $|d(x, A) - d(y, A)| \leq d(x, y)$. We will show that the function $f: x \mapsto d(x, A)$ is continuous at y, where $y \in X$ is arbitrary. Let $\epsilon > 0$ be arbitrary, and let $\delta = \epsilon$. Whenever $d(x, y) < \delta$ we have that $|d(x, A) - d(y, A)| \leq d(x, y) < \epsilon$. Thus f is continuous at y. But y was arbitrary, so f is continuous.