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PROBLEM SHEET 1

Exercise 1. Let p be a prime number. Define a function d: Z x Z — R by

0 ifm=n
d(m7 77/) = . _or—1 . e e .
+ if m # n, where m —n = p"~"q with ¢ € Z not divisible by p.

Show that d is a metric on Z.

Solution. We need to prove:
M1: d(m,n) > 0 with equality iff m = n;
M2: d(m,n) = d(n,m) for all n, m € Z;
M3: d(l,n) < d(l,m) + d(m,n) for all [, m, n € Z.

M1 is obvious. M2 is straightforward. For M3, let [ —m = p"~'q and m —n = p*~1¢’, with ¢

and ¢ coprime to p. Then d(I,m) = 1/r, d(m,n) = 1/s, and | —n = p'~1¢” with ¢" coprime to

p and t > min(r,s). So d(l,n) < 1/min(r,s) < 1/r +1/s, which is (M3).

Exercise 2. Let C([a,b]) denote the set of continuous functions from [a,b] to R, and let
C'([a, b]) denote the set of differentiable functions f: [a,b] — R such that f’ is continuous.
Let:

doo(f.9) = sup |f(x) = g()]

z€la,b]
This defines a metric on both C([a,b]) and C*([a, ]).
(1) Consider the map:

INT : (C([a,b]), dss) = (C'([a,b]), do)

fr—>/f t)dt

Is INT continuous?
(2) Consider the map:
DIFF : (Cl([a,b]),doo) = (C([a,b]), dw)
fef
Is DIFF continuous?

Solution. INT is continuous. We have that

doo <INT(f) INT(g) ) = sup

wE[ab/f gt dt'

< sup <|a:—a| sup \f(t)—g(t)|>

z€la,b] y€la,z]

< ‘b o al doo(fag)
So for any € > 0, if we set § = ¢/(b — a) then do (INT(f),INT(g)) < € whenever d(f, g) < &
1
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DIFF is not continuous. For example, let us assume for simplicity that 0 € [a,b]. Set g to be
the zero function and, for any 6 > 0, set f(z) = dsin(z/d). Then f € Bs(g), but

doo (DIFF(f),DIFF(g)) = sup |cos(z/d)| =1
z€[a,b]
So DIFF is not continuous at g.

Exercise 3. Let (X, d) be a metric space and A be a subset of X. Show that x € 0A if and
only if, for all € > 0, we have that B.(x) N A and B.(z) N (X \ A) are both non-empty.

Solution. Recall that 9A = A\ A. Suppose that « € dA. Then z € A, and hence B, (z) N A
is non-empty for all € > 0. Also # & A, so there does not exist € > 0 such that B.(z) C A. Put
differently: B.(z) N (X \ A) is non-empty for all ¢ > 0. We have shown that if € 0A then, for
all € > 0, both B.(z) N A and B.(xz) N (X \ A) are non-empty.

For the converse, the fact that B.(x) N A is non-empty for all € > 0 implies that » € A. And
the fact that B.(z) N (X \ A) is non-empty for all € > 0 shows that there is no € > 0 such that

B.(z) C A. In other words, z € A. Sox € A\ A= 0A.
Exercise 4. Let (X, d) be a metric space and A be a subset of X. For z € X, define
d(z,A) = inf{d(z,a) : a € A}
Show that:
(1) d(x, A) = 0 if and only if z € A.
(2) forally € X, d(z, A) < d(x,y) +d(y, A).
(3) the map = — d(x, A) defines a continuous function from X to R.

Solution. (1) Suppose that d(z,A) = 0. Let (a,) be a sequence of points in A such that
d(x,a,) < 1/n. Then, for all ¢ > 0, the ball B.(z) contains some a, € A, and so x € A.

Conversely, if z € A then we can find a sequence (a,) of points of A such that a,, € By, (z),
and so inf{d(z,a) : a € A} <inf{d(z,a,):n € N} =0. Thus d(x, A) = 0.
(2) For all a € A we have

d(z,a) < d(x,y) +d(y,a)
Thus

inf4 d(x,a") < d(z,y)+ d(y,a)
a'e

or in other words
d(z,A) < d(z,y) +d(y, a).
This holds for all a € A, so therefore

d(z, A) < inf (d(@,y) +d(y, 0)) = d(w,y) + d(y, A).
(3) From part (2) we have that
and, switching z and y, also that

Thus |d(z, A) —d(y, A)| < d(x,y). We will show that the function f: x + d(x, A) is continuous
at y, where y € X is arbitrary. Let e > 0 be arbitrary, and let 6 = e. Whenever d(z,y) < § we
have that |d(x, A) — d(y, A)| < d(x,y) < e. Thus f is continuous at y. But y was arbitrary, so
f is continuous.



