M2PM5 METRIC SPACES AND TOPOLOGY SPRING 2017

PROBLEM SHEET 1

Exercise 1. Let p be a prime number. Define a function $d: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}$ by

$$
d(m, n)= \begin{cases}0 & \text { if } m=n \\ \frac{1}{r} & \text { if } m \neq n, \text { where } m-n=p^{r-1} q \text { with } q \in \mathbb{Z} \text { not divisible by } p .\end{cases}
$$

Show that d is a metric on \mathbb{Z}.
Solution. We need to prove:
M1: $d(m, n) \geq 0$ with equality iff $m=n$;
M2: $d(m, n)=d(n, m)$ for all $n, m \in \mathbb{Z}$;
M3: $d(l, n) \leq d(l, m)+d(m, n)$ for all $l, m, n \in \mathbb{Z}$.
M1 is obvious. M2 is straightforward. For M3, let $l-m=p^{r-1} q$ and $m-n=p^{s-1} q^{\prime}$, with q and q^{\prime} coprime to p. Then $d(l, m)=1 / r, d(m, n)=1 / s$, and $l-n=p^{t-1} q^{\prime \prime}$ with $q^{\prime \prime}$ coprime to p and $t \geq \min (r, s)$. So $d(l, n) \leq 1 / \min (r, s) \leq 1 / r+1 / s$, which is (M3).

Exercise 2. Let $C([a, b])$ denote the set of continuous functions from $[a, b]$ to \mathbb{R}, and let $C^{1}([a, b])$ denote the set of differentiable functions $f:[a, b] \rightarrow \mathbb{R}$ such that f^{\prime} is continuous. Let:

$$
d_{\infty}(f, g)=\sup _{x \in[a, b]}|f(x)-g(x)|
$$

This defines a metric on both $C([a, b])$ and $C^{1}([a, b])$.
(1) Consider the map:

$$
\begin{aligned}
\text { InT }:\left(C([a, b]), d_{\infty}\right) & \rightarrow\left(C^{1}([a, b]), d_{\infty}\right) \\
f & \mapsto \int_{a}^{x} f(t) d t
\end{aligned}
$$

Is Int continuous?
(2) Consider the map:

$$
\begin{aligned}
\text { DIFF }:\left(C^{1}([a, b]), d_{\infty}\right) & \rightarrow\left(C([a, b]), d_{\infty}\right) \\
f & \mapsto f^{\prime}
\end{aligned}
$$

Is Diff continuous?
Solution. Int is continuous. We have that

$$
\begin{aligned}
d_{\infty}(\operatorname{Int}(f), \operatorname{InT}(g)) & =\sup _{x \in[a, b]}\left|\int_{a}^{x} f(t)-g(t) d t\right| \\
& \leq \sup _{x \in[a, b]}\left(|x-a| \sup _{y \in[a, x]}|f(t)-g(t)|\right) \\
& \leq|b-a| d_{\infty}(f, g)
\end{aligned}
$$

So for any $\epsilon>0$, if we set $\delta=\epsilon /(b-a)$ then $d_{\infty}(\operatorname{Int}(f), \operatorname{Int}(g))<\epsilon$ whenever $d_{\infty}(f, g)<\delta$.

Diff is not continuous. For example, let us assume for simplicity that $0 \in[a, b]$. Set g to be the zero function and, for any $\delta>0$, set $f(x)=\delta \sin (x / \delta)$. Then $f \in B_{\delta}(g)$, but

$$
d_{\infty}(\operatorname{DIFF}(f), \operatorname{DIFF}(g))=\sup _{x \in[a, b]}|\cos (x / \delta)|=1
$$

So Diff is not continuous at g.
Exercise 3. Let (X, d) be a metric space and A be a subset of X. Show that $x \in \partial A$ if and only if, for all $\epsilon>0$, we have that $B_{\epsilon}(x) \cap A$ and $B_{\epsilon}(x) \cap(X \backslash A)$ are both non-empty.
Solution. Recall that $\partial A=\bar{A} \backslash \AA$. Suppose that $x \in \partial A$. Then $x \in \bar{A}$, and hence $B_{\epsilon}(x) \cap A$ is non-empty for all $\epsilon>0$. Also $x \notin \AA$, so there does not exist $\epsilon>0$ such that $B_{\epsilon}(x) \subseteq A$. Put differently: $B_{\epsilon}(x) \cap(X \backslash A)$ is non-empty for all $\epsilon>0$. We have shown that if $x \in \partial A$ then, for all $\epsilon>0$, both $B_{\epsilon}(x) \cap A$ and $B_{\epsilon}(x) \cap(X \backslash A)$ are non-empty.

For the converse, the fact that $B_{\epsilon}(x) \cap A$ is non-empty for all $\epsilon>0$ implies that $x \in \bar{A}$. And the fact that $B_{\epsilon}(x) \cap(X \backslash A)$ is non-empty for all $\epsilon>0$ shows that there is no $\epsilon>0$ such that $B_{\epsilon}(x) \subseteq A$. In other words, $x \notin \AA$. So $x \in \bar{A} \backslash \AA=\partial A$.

Exercise 4. Let (X, d) be a metric space and A be a subset of X. For $x \in X$, define

$$
d(x, A)=\inf \{d(x, a): a \in A\}
$$

Show that:
(1) $d(x, A)=0$ if and only if $x \in \bar{A}$.
(2) for all $y \in X, d(x, A) \leq d(x, y)+d(y, A)$.
(3) the map $x \mapsto d(x, A)$ defines a continuous function from X to \mathbb{R}.

Solution. (1) Suppose that $d(x, A)=0$. Let $\left(a_{n}\right)$ be a sequence of points in A such that $d\left(x, a_{n}\right)<1 / n$. Then, for all $\epsilon>0$, the ball $B_{\epsilon}(x)$ contains some $a_{n} \in A$, and so $x \in \bar{A}$. Conversely, if $x \in \bar{A}$ then we can find a sequence $\left(a_{n}\right)$ of points of A such that $a_{n} \in B_{1 / n}(x)$, and so $\inf \{d(x, a): a \in A\} \leq \inf \left\{d\left(x, a_{n}\right): n \in \mathbb{N}\right\}=0$. Thus $d(x, A)=0$.
(2) For all $a \in A$ we have

$$
d(x, a) \leq d(x, y)+d(y, a)
$$

Thus

$$
\inf _{a^{\prime} \in A} d\left(x, a^{\prime}\right) \leq d(x, y)+d(y, a)
$$

or in other words

$$
d(x, A) \leq d(x, y)+d(y, a) .
$$

This holds for all $a \in A$, so therefore

$$
d(x, A) \leq \inf _{a \in A}(d(x, y)+d(y, a))=d(x, y)+d(y, A) .
$$

(3) From part (2) we have that

$$
d(x, A)-d(y, A) \leq d(x, y)
$$

and, switching x and y, also that

$$
d(y, A)-d(x, A) \leq d(x, y)
$$

Thus $|d(x, A)-d(y, A)| \leq d(x, y)$. We will show that the function $f: x \mapsto d(x, A)$ is continuous at y, where $y \in X$ is arbitrary. Let $\epsilon>0$ be arbitrary, and let $\delta=\epsilon$. Whenever $d(x, y)<\delta$ we have that $|d(x, A)-d(y, A)| \leq d(x, y)<\epsilon$. Thus f is continuous at y. But y was arbitrary, so f is continuous.

