M2PM5 METRIC SPACES AND TOPOLOGY SPRING 2017

PROBLEM SHEET 2

Exercise 1

(1) Say $\epsilon := d(x, y)$. Define $U := \mathcal{B}(x, \epsilon/3), V := \mathcal{B}(y, \epsilon/3)$, where for $x \in X$ and $\delta > 0, \mathcal{B}(x, \delta)$ denotes the open ball of radius δ around x. The sets U and V are open and contain x and y respectively. Also it is obvious that $U \cap V = \emptyset$.

Remark: some people asked what happens when you consider the discrete metric defined by d(x, y) = 1 if $x \neq y$, d(x, y) = 0 if x = y on X. We claim that in this case the above is trivially true as we can take $U := \{x\}$ and $V := \{y\}$. Indeed under the discrete metric, singletons are open. (Notice that for any $0 < \delta < 1$, $\mathcal{B}(x, \delta) = \{x\}$ in this metric!).

(2) By definition, B bounded means that there exists R > 0 s.t. $B \subset \mathcal{B}(0, R)$. Thus $C \subset \mathcal{B}(0, R)$, which means that C is also bounded. For the diameters, we have

$$\operatorname{diam} C := \sup\{|x - y|; x, y \in C\}$$

$$\tag{1}$$

 $\leq \sup\{|x-y|; x, y \in B\} \text{ (taking the sup on a smaller set)}$ (2)

$$=: \operatorname{diam} B. \tag{3}$$

Exercise 2

The function f is clearly continuous on $\mathbb{R}^2 \setminus \{(0,0)\}$ as a product of continuous functions on $\mathbb{R}^2 \setminus \{(0,0)\}$. We claim f is not continuous at (0,0). To prove this, one can exhibit two sequences that converge to a different limit. Alternatively (but in the same spirit), one can write $x = r \cos(\theta), y = r \sin(\theta)$ in polar co-ordinates and remark that $f(x,y) = \cos(\theta) \sin(\theta)$ is independent of r. Taking sequences along different angles give different results, hence f cannot be continuous at (0,0).

Exercise 3

(1) By definition of the closure, \subseteq is clear (the RHS is a finite union of closed sets, hence it is closed and it clearly contains the LHS). We prove \supseteq . Say $x \in \bigcup_{i=1}^{m} \overline{A_i}$.

Then there exists $i \in \{1, \ldots, m\}$ such that $x \in \overline{A_i}$, i.e., there exists a sequence $\{x_n\} \subseteq A_i$ converging to x. But this shows that there exists a sequence $\{x_n\} \subseteq \bigcup_{i=1}^m A_i$ converging to any $x \in \bigcup_{i=1}^m \overline{A_i}$, hence $RHS \subseteq LHS$.

(2) RHS is closed as an intersection of closed sets. Furthermore, it clearly contains $\bigcap_{i=1}^{m} A_i$. So it contains the smallest closed set with this property, which is by definition $\overline{\bigcap_{i=1}^{m} A_i}$.

(3) Take e.g. A := (0,1), B = (1,2) in \mathbb{R} . Then $\overline{A} \cap \overline{B} = [0,1] \cap [1,2] = \{1\}$ while $\overline{A \cap B} = \overline{\emptyset} = \emptyset$.

Exercise 4 The closures are computed in \mathbb{R} !

(1) $[1, \infty) = [1, \infty)$. $([1, \infty)$ is closed in \mathbb{R}).

(2) $\overline{\mathbb{R} \setminus \mathbb{Q}} = \mathbb{R}$. (Every real is the limit of a sequence of irrationals.)

(3) $A := \left\{\frac{n}{n+1} : n \in \mathbb{N}\right\} =: \{x_n\}_{n \in \mathbb{N}}$ has one limit point in \mathbb{R} , namely x = 1 so $\overline{A} = A \cup \{x\}$.

(4) $A := \left\{\frac{1}{n} : n \in \mathbb{N}, n \ge 2\right\} \cup \{0, 1, 2\}$. A is closed (it contains its only limit point 0). So $\overline{A} = A$.

Exercise 5

(1) At every step, each closed interval constituting C_n is split into two closed intervals. So the result follows by induction.

(2) C is closed as an intersection of closed sets.

(3) We have $K_n := [0, 3^{-n}] \in C_n$ for all $n \ge 0$. The K_n form a nested sequence of compact sets, hence their intersection is non-empty (alternatively, it is obvious that $\bigcap_{n\ge 0} K_n = \{0\}$ so $0 \in C$). Clearly, $\bigcap_{n\ge 0} K_n \subseteq \bigcap_{n\ge 0} C_n =: C$.

(4) We exhibit a surjection $C \to [0, 1]$. This shows that C has at least the cardinality of the reals, hence is uncountable. For this, remark that $x \in C_n$ iff $x = \overline{0.a_1 \dots a_n \dots}^3$, where $a_i \in \{0, 2\}$ for all $i \in \{1, \dots, n\}$. So $x \in C$ iff $x = \overline{0.a_1 a_2 a_3 \dots}^3$ with all $a_i \in \{0, 2\}$. Consider the map $\Phi : C \to [0, 1]$ defined by

$$\Phi(x) := \sum_{i=1}^{\infty} \frac{a_i}{2} 2^{-i} =: \overline{0.b_1 b_2 \dots}^2,$$

where $x = \sum_{i=1}^{\infty} a_i 3^{-i} \in C$ and $b_i := a_i/2 \in \{0, 1\}$. Clearly, Φ is onto (as we get all the possible binary expansions in [0,1]). So the result follows.

(5) We prove more than needed: we show that each point of C is both an accumulation point of C^c (the complement of C) and an accumulation point of C.

By (4), we know that $x \in C$ iff there are no 1's in its triadic expansion. Say $x \in C, x = \overline{0.a_1a_2a_3...}^3$. Suppose there are infinitely non-zero a_i . Then define $x_n := \overline{0.a_1a_2a_3...a_n0...}^3$. Clearly $x_n \in C, x_n \neq x$ for all n and $x_n \to x$. If there are only finitely many non zero a_i , write a_k for the largest non-zero digit. Then define $x_n := \overline{0.a_1...a_k0...2...}^3$, where the 2 is the k+n-th position. Again $x_n \in C$, $x_n \neq x$ for all n and $x_n \to x$. So this proves that any point of C is an accumulation point in C.

Recall $C = \bigcap_{n \ge 0} C_n$ and say $x \in C$. Let $\epsilon > 0$. We want to show that there exists $y \notin C$ such that $|x - y| < \epsilon$. Take $n > -\frac{\log(\epsilon)}{\log(3)}$. Then, x is contained in an interval of length 3^{-n} . Split the interval in three parts. We know that the middle part is in C^c by construction. So take y in this part. We have $y \in C^c$ and $|x - y| < 3^{-n} < \epsilon$, which shows that any point of C is an accumulation point for C^c .

(6) Say $x \in C$ and let $\epsilon > 0$. We claim that $\mathcal{B}(x,\epsilon) \cap C^c \neq \emptyset$ (so C is nowhere dense). This follows from (5): we have seen that any point of C is an accumulation point for C^c so there exists $y \in C^c$ such that $|x - y| < \epsilon$, i.e., $y \in \mathcal{B}(x,\epsilon)$, which is what we wanted.