M2PM5 METRIC SPACES AND TOPOLOGY SPRING 2017

PROBLEM SHEET 2

Exercise 1

(1) Say $\epsilon:=d(x, y)$. Define $U:=\mathcal{B}(x, \epsilon / 3), V:=\mathcal{B}(y, \epsilon / 3)$, where for $x \in X$ and $\delta>0, \mathcal{B}(x, \delta)$ denotes the open ball of radius δ around x. The sets U and V are open and contain x and y respectively. Also it is obvious that $U \cap V=\emptyset$.

Remark: some people asked what happens when you consider the discrete metric defined by $d(x, y)=1$ if $x \neq y, d(x, y)=0$ if $x=y$ on X. We claim that in this case the above is trivially true as we can take $U:=\{x\}$ and $V:=\{y\}$. Indeed under the discrete metric, singletons are open. (Notice that for any $0<\delta<1, \mathcal{B}(x, \delta)=\{x\}$ in this metric!).
(2) By definition, B bounded means that there exists $R>0$ s.t. $B \subset \mathcal{B}(0, R)$. Thus $C \subset \mathcal{B}(0, R)$, which means that C is also bounded. For the diameters, we have

$$
\begin{align*}
\operatorname{diam} C & :=\sup \{|x-y| ; x, y \in C\} \tag{1}\\
& \leq \sup \{|x-y| ; x, y \in B\} \text { (taking the sup on a smaller set) } \tag{2}\\
& =: \operatorname{diam} B \tag{3}
\end{align*}
$$

Exercise 2

The function f is clearly continuous on $\mathbb{R}^{2} \backslash\{(0,0)\}$ as a product of continuous functions on $\mathbb{R}^{2} \backslash\{(0,0)\}$. We claim f is not continuous at $(0,0)$. To prove this, one can exhibit two sequences that converge to a different limit. Alternatively (but in the same spirit), one can write $x=r \cos (\theta), y=r \sin (\theta)$ in polar co-ordinates and remark that $f(x, y)=\cos (\theta) \sin (\theta)$ is independent of r. Taking sequences along different angles give different results, hence f cannot be continuous at $(0,0)$.

Exercise 3

(1) By definition of the closure, \subseteq is clear (the RHS is a finite union of closed sets, hence it is closed and it clearly contains the LHS). We prove \supseteq. Say $x \in \bigcup_{i=1}^{m} \overline{A_{i}}$.

Then there exists $i \in\{1, \ldots, m\}$ such that $x \in \overline{A_{i}}$, i.e., there exists a sequence $\left\{x_{n}\right\} \subseteq A_{i}$ converging to x. But this shows that there exists a sequence $\left\{x_{n}\right\} \subseteq$ $\bigcup_{i=1}^{m} A_{i}$ converging to any $x \in \bigcup_{i=1}^{m} \overline{A_{i}}$, hence $R H S \subseteq L H S$.
(2) RHS is closed as an intersection of closed sets. Furthermore, it clearly contains $\bigcap_{i=1}^{m} A_{i}$. So it contains the smallest closed set with this property, which is by definition $\overline{\bigcap_{i=1}^{m} A_{i}}$.
(3) Take e.g. $A:=(0,1), B=(1,2)$ in \mathbb{R}. Then $\bar{A} \cap \bar{B}=[0,1] \cap[1,2]=\{1\}$ while $\overline{A \cap B}=\bar{\emptyset}=\emptyset$.

Exercise 4 The closures are computed in \mathbb{R} !
(1) $\overline{[1, \infty)}=[1, \infty) .([1, \infty)$ is closed in $\mathbb{R})$.
(2) $\overline{\mathbb{R} \backslash \mathbb{Q}}=\mathbb{R}$. (Every real is the limit of a sequence of irrationals.)
(3) $A:=\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}=:\left\{x_{n}\right\}_{n \in \mathbb{N}}$ has one limit point in \mathbb{R}, namely $x=1$ so $\bar{A}=A \cup\{x\}$.
(4) $A:=\left\{\frac{1}{n}: n \in \mathbb{N}, n \geq 2\right\} \cup\{0,1,2\}$. A is closed (it contains its only limit point $0)$. So $\bar{A}=A$.

Exercise 5

(1) At every step, each closed interval constituting C_{n} is split into two closed intervals. So the result follows by induction.
(2) C is closed as an intersection of closed sets.
(3) We have $K_{n}:=\left[0,3^{-n}\right] \in C_{n}$ for all $n \geq 0$. The K_{n} form a nested sequence of compact sets, hence their intersection is non-empty (alternatively, it is obvious that $\bigcap_{n \geq 0} K_{n}=\{0\}$ so $0 \in C$). Clearly, $\bigcap_{n \geq 0} K_{n} \subseteq \bigcap_{n \geq 0} C_{n}=: C$.
(4) We exhibit a surjection $C \rightarrow[0,1]$. This shows that C has at least the cardinality of the reals, hence is uncountable. For this, remark that $x \in C_{n}$ iff $x=$ ${\overline{0 . a_{1} \ldots a_{n} \ldots}}^{3}$, where $a_{i} \in\{0,2\}$ for all $i \in\{1, \ldots, n\}$. So $x \in C$ iff $x={\overline{0 . a_{1} a_{2} a_{3} \ldots}}^{3}$ with all $a_{i} \in\{0,2\}$. Consider the map $\Phi: C \rightarrow[0,1]$ defined by

$$
\Phi(x):=\sum_{i=1}^{\infty} \frac{a_{i}}{2} 2^{-i}=:{\overline{0 . b_{1} b_{2} \ldots}}^{2},
$$

where $x=\sum_{i=1}^{\infty} a_{i} 3^{-i} \in C$ and $b_{i}:=a_{i} / 2 \in\{0,1\}$. Clearly, Φ is onto (as we get all the possible binary expansions in $[0,1]$). So the result follows.
(5) We prove more than needed: we show that each point of C is both an accumulation point of C^{c} (the complement of C) and an accumulation point of C.

By (4), we know that $x \in C$ iff there are no 1 's in its triadic expansion. Say $x \in C, x={\overline{0 . a_{1} a_{2} a_{3} \ldots}}^{3}$. Suppose there are infinitely non-zero a_{i}. Then define $x_{n}:=\overline{0 . a_{1} a_{2} a_{3} \ldots a_{n} 0 \ldots}$. Clearly $x_{n} \in C, x_{n} \neq x$ for all n and $x_{n} \rightarrow x$. If there are only finitely many non zero a_{i}, write a_{k} for the largest non-zero digit. Then define $x_{n}:={\overline{0 . a_{1} \ldots a_{k} 0 \ldots 2 \ldots}}^{3}$, where the 2 is the $k+n$-th position. Again $x_{n} \in C$, $x_{n} \neq x$ for all n and $x_{n} \rightarrow x$. So this proves that any point of C is an accumulation point in C.

Recall $C=\bigcap_{n \geq 0} C_{n}$ and say $x \in C$. Let $\epsilon>0$. We want to show that there exists $y \notin C$ such that $|x-y|<\epsilon$. Take $n>-\frac{\log (\epsilon)}{\log (3)}$. Then, x is contained in an interval of length 3^{-n}. Split the interval in three parts. We know that the middle part is in C^{c} by construction. So take y in this part. We have $y \in C^{c}$ and $|x-y|<3^{-n}<\epsilon$, which shows that any point of C is an accumulation point for C^{c}.
(6) Say $x \in C$ and let $\epsilon>0$. We claim that $\mathcal{B}(x, \epsilon) \cap C^{c} \neq \emptyset$ (so C is nowhere dense). This follows from (5): we have seen that any point of C is an accumulation point for C^{c} so there exists $y \in C^{c}$ such that $|x-y|<\epsilon$, i.e., $y \in \mathcal{B}(x, \epsilon)$, which is what we wanted.

