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SPRING 2017

PROBLEM SHEET 2

Exercise 1

(1) Say € :=d(x,y). Define U := B(z,€¢/3), V := B(y, ¢/3), where for x € X and
0 > 0, B(z,0) denotes the open ball of radius § around x. The sets U and V' are
open and contain x and y respectively. Also it is obvious that U NV = 0.

Remark: some people asked what happens when you consider the discrete metric
defined by d(z,y) =1if z # y, d(x,y) = 0 if x = y on X. We claim that in this case
the above is trivially true as we can take U := {z} and V := {y}. Indeed under the
discrete metric, singletons are open. (Notice that for any 0 < § < 1, B(z,0) = {z}
in this metric!).

(2) By definition, B bounded means that there exists R > 0 s.t. B C B(0, R).
Thus C' C B(0, R), which means that C' is also bounded. For the diameters, we have

diam C' := sup{|z — y|;z,y € C} (1)
< sup{|r — y|;z,y € B} (taking the sup on a smaller set) (2)
=: diam B. (3)

Exercise 2

The function f is clearly continuous on R?\ {(0,0)} as a product of continuous
functions on R?\ {(0,0)}. We claim f is not continuous at (0,0). To prove this,
one can exhibit two sequences that converge to a different limit. Alternatively (but
in the same spirit), one can write z = rcos(f),y = rsin(f) in polar co-ordinates
and remark that f(x,y) = cos(#)sin(f) is independent of r. Taking sequences along
different angles give different results, hence f cannot be continuous at (0, 0).

Exercise 3

(1) By definition of the closure, C is clear (the RHS is a finite union of closed sets,
hence it is closed and it clearly contains the LHS). We prove D. Say z € [J-, A;.
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Then there exists i € {1,...,m} such that z € A;, ie., there exists a sequence
{z,} C A; converging to x. But this shows that there exists a sequence {z,} C
Ui~ A; converging to any = € ", A;, hence RHS C LHS.

(2) RHS is closed as an intersection of closed sets. Furthermore, it clearly con-
tains ();-; A;. So it contains the smallest closed set with this property, which is by

definition (-, A
(3) Take e.g. A:=(0,1), B=(1,2)in R. Then ANB = [0,1]N[1,2] = {1} while
ANB=0=0.

Exercise 4 The closures are computed in R!

(1) [1,00) = [1,00). ([1,00) is closed in R).
=R. (Every real is the limit of a sequence of irrationals.)
{ ‘n € N} =: {x, }nen has one limit point in R, namely x = 1 so

A= A U {x
= { L. neNn> 2} U{0,1,2}. Ais closed (it contains its only limit point
0). So A A.

Exercise 5

(1) At every step, each closed interval constituting C,, is split into two closed
intervals. So the result follows by induction.

(2) C is closed as an intersection of closed sets.

(3) We have K,, :=[0,37"] € C,, for all n > 0. The K,, form a nested sequence of
compact sets, hence their intersection is non-empty (alternatively, it is obvious that

Nz Kn = {0} s0 0 € C). Clearly, 1,59 Kn € (1,50 Cn =: C.

(4) We exhibit a surjection C' — [0,1]. This shows that C' has at least the
cardinality of the reals, hence is uncountable. For this, remark that x € C, iff z =
O.al...an...3, where a; € {0,2} foralli e {1,...,n}. Sox € Ciff x = O.a1a2a3...3
with all a; € {0,2}. Consider the map ® : C' — |0, 1] defined by

o0

O(z) = Z %Z_i =:0.b10s .. .2,

i=1
where z = Y7 4;37" € C and b; := q;/2 € {0,1}. Clearly, @ is onto (as we get all
the possible binary expansions in [0,1]). So the result follows.

(5) We prove more than needed: we show that each point of C' is both an accu-
mulation point of C° (the complement of C') and an accumulation point of C'.
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By (4), we know that x € C iff there are no 1’s in its triadic expansion. Say

r € C, v = 0.a1a00a3 . . N Suppose there are infinitely non-zero a;. Then define
T, = 0.a1a0a3...a,0.. 2 Clearly z,, € C, x,, # z for all n and z,, — z. If there
are only finitely many non zero a;, write a; for the largest non-zero digit. Then
define x,, :=0.a;...a;0...2.. .3, where the 2 is the k + n-th position. Again x,, € C,
x, # x for all n and x,, — x. So this proves that any point of C' is an accumulation
point in C.

Recall C' =(,,5,Cn and say z € C. Let € > 0. We want to show that there exists

y ¢ C such that |z — y| < e. Take n > —iggg Then, z is contained in an interval
of length 37™. Split the interval in three parts. We know that the middle part is in
C*° by construction. So take y in this part. We have y € C¢ and |z — y| < 37" < ¢,

which shows that any point of C' is an accumulation point for C°.

(6) Say z € C and let € > 0. We claim that B(z,¢) N C* # ) (so C' is nowhere
dense). This follows from (5): we have seen that any point of C' is an accumulation
point for C° so there exists y € C° such that |z — y| < ¢, i.e., y € B(z,¢), which is
what we wanted.




