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Exercise 1

(1) Say ε := d(x, y). Define U := B(x, ε/3), V := B(y, ε/3), where for x ∈ X and
δ > 0, B(x, δ) denotes the open ball of radius δ around x. The sets U and V are
open and contain x and y respectively. Also it is obvious that U ∩ V = ∅.

Remark: some people asked what happens when you consider the discrete metric
defined by d(x, y) = 1 if x 6= y, d(x, y) = 0 if x = y on X. We claim that in this case
the above is trivially true as we can take U := {x} and V := {y}. Indeed under the
discrete metric, singletons are open. (Notice that for any 0 < δ < 1, B(x, δ) = {x}
in this metric!).

(2) By definition, B bounded means that there exists R > 0 s.t. B ⊂ B(0, R).
Thus C ⊂ B(0, R), which means that C is also bounded. For the diameters, we have

diamC := sup{|x− y|;x, y ∈ C} (1)

≤ sup{|x− y|;x, y ∈ B} (taking the sup on a smaller set) (2)

=: diamB. (3)

Exercise 2

The function f is clearly continuous on R2 \ {(0, 0)} as a product of continuous
functions on R2 \ {(0, 0)}. We claim f is not continuous at (0, 0). To prove this,
one can exhibit two sequences that converge to a different limit. Alternatively (but
in the same spirit), one can write x = r cos(θ), y = r sin(θ) in polar co-ordinates
and remark that f(x, y) = cos(θ) sin(θ) is independent of r. Taking sequences along
different angles give different results, hence f cannot be continuous at (0, 0).

Exercise 3

(1) By definition of the closure, ⊆ is clear (the RHS is a finite union of closed sets,
hence it is closed and it clearly contains the LHS). We prove ⊇. Say x ∈

⋃m
i=1Ai.
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Then there exists i ∈ {1, . . . ,m} such that x ∈ Ai, i.e., there exists a sequence
{xn} ⊆ Ai converging to x. But this shows that there exists a sequence {xn} ⊆⋃m
i=1Ai converging to any x ∈

⋃m
i=1Ai, hence RHS ⊆ LHS.

(2) RHS is closed as an intersection of closed sets. Furthermore, it clearly con-
tains

⋂m
i=1Ai. So it contains the smallest closed set with this property, which is by

definition
⋂m
i=1Ai.

(3) Take e.g. A := (0, 1), B = (1, 2) in R. Then A∩B = [0, 1]∩ [1, 2] = {1} while
A ∩B = ∅ = ∅.

Exercise 4 The closures are computed in R!

(1) [1,∞) = [1,∞). ([1,∞) is closed in R).
(2) R \Q = R. (Every real is the limit of a sequence of irrationals.)
(3) A :=

{
n
n+1

: n ∈ N
}

=: {xn}n∈N has one limit point in R, namely x = 1 so

A = A ∪ {x}.
(4) A :=

{
1
n

: n ∈ N, n ≥ 2
}
∪{0, 1, 2}. A is closed (it contains its only limit point

0). So A = A.

Exercise 5

(1) At every step, each closed interval constituting Cn is split into two closed
intervals. So the result follows by induction.

(2) C is closed as an intersection of closed sets.

(3) We have Kn := [0, 3−n] ∈ Cn for all n ≥ 0. The Kn form a nested sequence of
compact sets, hence their intersection is non-empty (alternatively, it is obvious that⋂
n≥0Kn = {0} so 0 ∈ C). Clearly,

⋂
n≥0Kn ⊆

⋂
n≥0Cn =: C.

(4) We exhibit a surjection C � [0, 1]. This shows that C has at least the
cardinality of the reals, hence is uncountable. For this, remark that x ∈ Cn iff x =
0.a1 . . . an . . .

3
, where ai ∈ {0, 2} for all i ∈ {1, . . . , n}. So x ∈ C iff x = 0.a1a2a3 . . .

3

with all ai ∈ {0, 2}. Consider the map Φ : C → [0, 1] defined by

Φ(x) :=
∞∑
i=1

ai
2

2−i =: 0.b1b2 . . .
2
,

where x =
∑∞

i=1 ai3
−i ∈ C and bi := ai/2 ∈ {0, 1}. Clearly, Φ is onto (as we get all

the possible binary expansions in [0,1]). So the result follows.

(5) We prove more than needed: we show that each point of C is both an accu-
mulation point of Cc (the complement of C) and an accumulation point of C.
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By (4), we know that x ∈ C iff there are no 1’s in its triadic expansion. Say

x ∈ C, x = 0.a1a2a3 . . .
3
. Suppose there are infinitely non-zero ai. Then define

xn := 0.a1a2a3 . . . an0 . . .
3
. Clearly xn ∈ C, xn 6= x for all n and xn → x. If there

are only finitely many non zero ai, write ak for the largest non-zero digit. Then
define xn := 0.a1 . . . ak0 . . . 2 . . .

3
, where the 2 is the k+n-th position. Again xn ∈ C,

xn 6= x for all n and xn → x. So this proves that any point of C is an accumulation
point in C.

Recall C =
⋂
n≥0Cn and say x ∈ C. Let ε > 0. We want to show that there exists

y /∈ C such that |x − y| < ε. Take n > − log(ε)
log(3)

. Then, x is contained in an interval

of length 3−n. Split the interval in three parts. We know that the middle part is in
Cc by construction. So take y in this part. We have y ∈ Cc and |x − y| < 3−n < ε,
which shows that any point of C is an accumulation point for Cc.

(6) Say x ∈ C and let ε > 0. We claim that B(x, ε) ∩ Cc 6= ∅ (so C is nowhere
dense). This follows from (5): we have seen that any point of C is an accumulation
point for Cc so there exists y ∈ Cc such that |x − y| < ε, i.e., y ∈ B(x, ε), which is
what we wanted.
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