M2PM5 METRIC SPACES AND TOPOLOGY SPRING 2017

SOLUTIONS TO PROBLEM SHEET 3

Exercise 1.

(1) Let $A \subset X$ be a finite set. We claim that A is closed and therefore $\bar{A}=A$. To check this it suffices to see that $X \backslash A$ is open since $X \backslash(X \backslash A)=A$ which is finite.
(2) Let $A \subset X$ be an infinite set. We claim that $\bar{A}=X$ in this case. To show this we want to show the only closed set containing A is X and therefore the intersection of all closed sets containing A is X. Suppose $A \subseteq B$ where B is a closed set. Then $X \backslash B$ is open. Since $X \backslash(X \backslash B)=B$ and B contains the infinite A, we must have $X \backslash B=\varnothing$ hence $X=B$ as required.
Exercise 2. We prove that $\mathcal{T}_{1} \cap \mathcal{T}_{2}$ is a topology on X but give a counterexample to show $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ need not be a topology on X.

To show $\mathcal{T}_{1} \cap \mathcal{T}_{2}$ is a topology on X we need to check the three topological space axioms.
(T1) We have $\varnothing, X \in \mathcal{T}_{1}, \mathcal{T}_{2}$ by definition. Therefore $\varnothing, X \in \mathcal{T}_{1} \cap \mathcal{T}_{2}$.
(T2) Take an arbitrary collection of open sets $\left\{U_{\lambda}\right\}_{\lambda \in \Lambda} \subseteq \mathcal{T}_{1} \cap \mathcal{T}_{2}$. Then $\bigcup_{\lambda} U_{\lambda} \in \mathcal{T}_{1}, \mathcal{T}_{2}$ and therefore $\bigcup_{\lambda} U_{\lambda} \in \mathcal{T}_{1} \cap \mathcal{T}_{2}$.
(T3) Take a finite collection of open sets $U_{1}, \ldots, U_{n} \in \mathcal{T}_{1}, \mathcal{T}_{2}$. Then $\bigcap_{i=1}^{n} U_{i} \in \mathcal{T}_{1}, \mathcal{T}_{2}$ and therefore $\bigcap_{i=1}^{n} U_{i} \in \mathcal{T}_{1} \cap \mathcal{T}_{2}$.

To show $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ need not be a topology on X, let $X=\{1,2,3,4\}$. Let $\mathcal{T}_{1}=\{\varnothing, X,\{1\},\{2\},\{1,2\}\}$ and $\mathcal{T}_{2}=\{\varnothing, X,\{1\},\{3\},\{1,3\}\}$. Then $\mathcal{T}_{1} \cup \mathcal{T}_{2}=\{\varnothing, X,\{1\},\{2\},\{3\},\{1,2\},\{1,3\}\}$. Now we can see that $\{1,2\}$ and $\{1,3\}$ are in $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ but $\{1,2,3\}=\{1,2\} \cup\{1,3\}$ is not.
Exercise 3. By definition $\partial A=\bar{A} \backslash \AA$. First note that $B \backslash C=B \cap(X \backslash C)$. We also have that $\AA=X \backslash \overline{X \backslash A}$ so $X \backslash \AA=\overline{X \backslash A}$. Therefore $\partial A=\bar{A} \cap(X \backslash \AA)=\bar{A} \cap \overline{X \backslash A}$ as required.

Exercise 4.

(1) We show p_{1} is continuous, an analogous argument shows that p_{2} is continuous. Given U open in X we must show $p_{1}^{-1}(U) \in \mathcal{T}$. By definition of p_{1} we see that $p_{1}^{-1}(U)=U \times Y$ and since U is open in X and Y is open in Y we see that $U \times Y \in \mathcal{T}$.
(2) Assume $f: Z \rightarrow X \times Y$ is continuous. Then $p_{1} \circ f$ and $p_{2} \circ f$ are continuous because they are compositions of continuous functions.

Now we assume $p_{1} \circ f$ and $p_{2} \circ f$ are continuous. Let W be open in $X \times Y$. Then W is a union of elements of \mathcal{B}, say $W=\bigcup_{\lambda \in \Lambda} U_{\lambda} \times V_{\lambda}$. Since arbitrary unions of open sets are open in Z it suffices to check that $f^{-1}\left(U_{\lambda} \times V_{\lambda}\right)$ is open in Z for every $\lambda \in \Lambda$. Let $\left(p_{1} \circ f\right)^{-1}\left(U_{\lambda}\right)=Z_{1}$ and $\left(p_{2} \circ f\right)^{-1}\left(V_{\lambda}\right)=Z_{2}$. Then Z_{1} and Z_{2} are open in Z because $p_{1} \circ f$ and $p_{2} \circ f$ are continuous. By definition of Z_{1} and Z_{2} we must have $f^{-1}\left(U_{\lambda} \times V_{\lambda}\right) \supseteq Z_{1} \cap Z_{2}$ and since any element in Z which maps into $U_{\lambda} \times V_{\lambda}$ must map into U_{λ} under $p_{1} \circ f$ and map into V_{λ} under $p_{2} \circ f$ we have $f^{-1}\left(U_{\lambda} \times V_{\lambda}\right) \subseteq Z_{1} \cap Z_{2}$. Hence $f^{-1}\left(U_{\lambda} \times V_{\lambda}\right)=Z_{1} \cap Z_{2}$ which is open in Z, as required.

