M2PM5 METRIC SPACES AND TOPOLOGY SPRING 2017

SOLUTIONS TO PROBLEM SHEET 4

Exercise 1.

(1) If X is compact then every open cover has a finite subcover. Since X has the discrete topology the set of all singletons form an open cover of X, $U_x = x$ for all $x \in X$. The only subcover of this is the cover itself. This is because removing any set, U_x will mean x is no longer in the the union of the sets. Hence as X is compact we must have that this cover is in fact finite, and hence X must be finite.

Conversely, if X is finite then any open cover of X (after deleting any repeats of the same set) will contain at most $2^{|X|}$ sets and is therefore finite.

(2) Take an open cover $\{U_{\alpha}\}_{\alpha \in \Lambda}$ of $Y \cup Z$. Then $\{U_{\alpha}\}$ is an open cover of Y so there exists a finite subset $A \subseteq \Lambda$ such that $\{U_{\alpha}\}_{\alpha \in A}$ is an open cover for Y. Similarly there exists a finite subset $B \subseteq \Lambda$ such that $\{U_{\alpha}\}_{\alpha \in B}$ is an open cover for Z. Therefore $A \cup B$ is finite and $\{U_{\alpha}\}_{\alpha \in A \cup B}$ is an open finite subcover for $Y \cup Z$ as required.

Exercise 2. Take an open cover $\{U_{\alpha}\}_{\alpha \in \Lambda}$ of $f(X) \subseteq Y$. Then $\{f^{-1}(U_{\alpha})\}_{\alpha \in \Lambda}$ is an open cover of X. Since X is compact there is a finite subset $A \subseteq \Lambda$ such that $\{f^{-1}(U_{\alpha})\}_{\alpha \in A}$ is an finite cover of X. Then $\{U_{\alpha}\}_{\alpha \in A}$ is an open cover of f(X) (it certainly consists of open sets, and if $y \in f(X)$ then y = f(x) for some $x \in X$, and since $x \in f^{-1}(U_{\alpha})$ for some $\alpha \in A$ we have that $y \in U_{\alpha}$.). Therefore every open cover of f(X) has a finite subcover as required.

Exercise 3. Suppose the intersection is empty and let $U_n = X \setminus V_n$. Then U_n is open for each n and $U_j \subseteq U_{j+1}$. Moreover $\bigcup U_n = \bigcup (X \setminus V_n) = X \setminus \bigcap V_n = X$. Therefore by the compactness of X we only need finitely many of these, so $X = U_1 \cup \cdots \cup U_m$ for some m. Since $U_j \subseteq U_{j+1}$ it follows that $X = U_m$. However $U_m = X \setminus V_m$ which would imply V_m is empty, a contradiction.

The statement is not true without the assumption of compactness. Let X = (0, 1] with the usual topology induced from \mathbb{R} . Then X is not compact. Let $V_n = (0, \frac{1}{n+1}]$, which are closed in X. Then clearly $V_0 \supseteq V_1 \supseteq V_2 \supseteq \cdots$ but $\bigcap_{n \ge 0} V_n = \emptyset$ (we can of course take a large enough

N such that any real number strictly greater than 0 is not contained in $V_n = (0, \frac{1}{N+1}]$.

Exercise 4. Suppose that $A \cup B$ is disconnected. Then there exists a continuous surjective map $f : A \cup B \to \{0, 1\}$. Consider the restriction of f to A, $f|_A : A \to \{0, 1\}$. Then $f|_A$ is continuous but cannot be surjective as A is connected. Therefore we may assume f(a) = 0 for all $a \in A$. Similarly $f|_B$ is a continuous map from B to $\{0, 1\}$ which cannot be surjective. If f(b) = 0 for all $b \in B$ then f would not be surjective so we must have that f(b) = 1 for all $b \in B$. So it is clear that $f^{-1}(0) = A$ which must be open in $A \cup B$ as f is continuous. We know that $A \cap \overline{B} \neq \emptyset$ so there exists $a \in A$ such that $a \in \overline{B}$, therefore every neighbourhood of a contains an element of B. Now $f^{-1}(0)$ is a neighbourhood of a and therefore must contain some $b \in B$. This is a contradiction though, because f(b) = 1 for all $b \in B$. Therefore $A \cup B$ is connected as required.

Of course we cannot drop the assumption $A \cap \overline{B} \neq \emptyset$. Letting $X = \mathbb{R}$ with the usual topology and A = (0, 1), B = (1, 2) gives an easy counterexample.