M2PM5 METRIC SPACES AND TOPOLOGY SPRING 2017

PROBLEM SHEET 5

January 3, 2017

Exercise 1

(1) We check the axioms:
$(\mathrm{T} 1) \emptyset \in \mathcal{T} \subset \tilde{\mathcal{T}}$.
(T2) As regards finite intersections, the intersection of $V \cup\{\infty\}$ and $W \cap\{\infty\}$ is again a set of the right form since a finite union of compact sets is compact. The intersection of a set $U \in \mathcal{T}$ and a set $V \cup\{\infty\}$ is $U \cap V$, where $V \in \mathcal{T}$ so $U \cap \tilde{\sim} V \in \mathcal{T} \subset \tilde{\mathcal{T}}$. Finally, the intersection of two sets in \mathcal{T} is in \mathcal{T} hence in $\tilde{\mathcal{T}}$.
(T3) Suppose that $U_{i} \in \tilde{\mathcal{T}}, i \in I$. We need to show that $\bigcup_{i \in I} U_{i} \in \tilde{\mathcal{T}}$. Either each U_{i} is in \mathcal{T} - in which case $\bigcup_{i \in I} U_{i} \in \mathcal{T} \subset \tilde{\mathcal{T}}$ because \mathcal{T} is a topology - or we can write $I=J \cup K$ with:

* $U_{j} \in \mathcal{T}$ for all $j \in J$;
* $U_{k}=V_{k} \cup\{\infty\}$ with $X \backslash V_{k}$ compact and closed, for all $k \in K$; and * K non-empty.

Then $\bigcup_{i \in I} U_{i}=X \backslash V$ where $V=X \backslash \bigcup_{i \in I} U_{i}=\bigcap_{i \in I} X \backslash U_{i}$. Now

$$
V=\bigcap_{i \in I} X \backslash U_{i}=\left(\bigcap_{j \in J} X \backslash U_{j}\right) \cap\left(\bigcap_{k \in K} V_{k}\right)
$$

The left-hand set here is an intersection of closed sets, hence is closed. The right-hand set here is an intersection of closed sets, hence is closed, and is a subset of a compact set V_{k} (recall that there exists some $k \in K$). Thus the right-hand set here is a closed subset of a compact set, hence compact,
and so V is a closed subset of a compact set. Hence V is compact; thus $\bigcup_{i \in I} U_{i} \in \tilde{\mathcal{T}}$.
(2) Let $\left\{U_{\alpha}\right\}$ be an open cover of \tilde{X}. Take any set in the cover that contains $\{\infty\}$, say $U^{*}:=V \cup\{\infty\}$. Then $X \backslash V$ is compact and closed. $\left\{U_{\alpha} \cap(X \backslash V)\right\}$ is an open cover of $X \backslash V$. Hence we can take a finite sub-cover, say $U_{\alpha_{1}} \cap(X \backslash$ $V), \ldots, U_{\alpha_{n}} \cap(X \backslash V)$. Whence, $U^{*}, U_{\alpha_{1}}, \ldots, U_{\alpha_{n}}$ is a finite sub-cover of \tilde{X}.
(3) The subspace topology $\tilde{\mathcal{T}} \cap X$ consists of \mathcal{T} and the sets $V \subseteq X$ such that $X \backslash V$ is compact and closed. These V 's are thus in \mathcal{T} and the subspace topology on X coincides with \mathcal{T}.
(4) $(\tilde{X}, \tilde{\mathcal{T}})$ is homeomorphic to \mathbb{S}^{1}, the unit sphere in \mathbb{R}^{2}. A homeomorphism is given by the stereographic projection $\phi: \mathbb{S}^{1} \rightarrow \tilde{X}$ defined by

$$
\begin{equation*}
\phi(x, y):=\frac{x}{1-y}, \phi(0,1)=\infty . \tag{1}
\end{equation*}
$$

It should be clear that the map is bijective and continuous with respect to the natural subspace topology on \mathbb{S}^{1} and the topology $\tilde{\mathcal{T}}$ on \tilde{X}. The inverse map is given by

$$
\begin{equation*}
\phi^{-1}(t)=\left(\frac{2 t}{1+t^{2}}, \frac{-1+t^{2}}{1+t^{2}}\right) \tag{2}
\end{equation*}
$$

and is also continuous with respect to these topologies. Notice that the topology $\tilde{\mathcal{T}}$ is exactly the topology needed to make ϕ and ϕ^{-1} continuous. Therefore the stereographic projection $\phi: \mathbb{S}^{1} \rightarrow \tilde{X}$ is a homeomorphism, i.e. $\mathbb{S}^{1} \approx \tilde{\mathcal{T}}$.
(5) $(\tilde{X}, \tilde{\mathcal{T}})$ is homeomorphic to the sphere \mathbb{S}^{2}, the unit sphere in \mathbb{R}^{3}. The homeomorphism is again given by the stereographic projection $\phi: \mathbb{S}^{2} \rightarrow \tilde{X}$ defined by

$$
\begin{equation*}
\phi(x, y, z):=\left(\frac{x}{1-z}, \frac{y}{1-z}\right) . \tag{3}
\end{equation*}
$$

The inverse map is given by

$$
\begin{equation*}
\phi^{-1}(t, u):=\left(\frac{2 t}{1+t^{2}+u^{2}}, \frac{2 u}{1+t^{2}+u^{2}}, \frac{-1+t^{2}+u^{2}}{1+t^{2}+u^{2}}\right) . \tag{4}
\end{equation*}
$$

Once again it is easy to check that ϕ and ϕ^{-1} are continuous hence, i.e. $\mathbb{S}^{2} \approx \tilde{\mathcal{T}}$.

Exercise 2

(1) Obvious from a picture. Perhaps easier to formalize in polar co-ordinates. We exhibit a path that works. Say $P_{1}=\left(r_{1}, \theta_{1}\right), P_{2}=\left(r_{2}, \theta_{2}\right)$. Consider the path γ defined by $\gamma(t)=\left(r_{2}, \theta_{2}+2 t\left(\theta_{1}-\theta_{2}\right)\right)$ for $t \in[0,1 / 2]$ and $\gamma(t)=$ $\left(r_{2}+2(t-1 / 2)\left(r_{2}-r_{1}\right), \theta_{1}\right)$ for $t \in[1 / 2,1] . \gamma$ is obviously continuous and lies in X. Furthermore, $\gamma(0)=P_{2}$ and $\gamma(1)=P_{1}$ so we are done.
(2) Again this is clear by drawing a picture. There is no path from $(-1,0)$ to $(2,0)$ laying in X. For if there be such a path, $f=p_{1} \circ \gamma$ (p_{1} being the projection on the x-axis) would be a continuous functions with value in \mathbb{R} satisfying $f(0)=-1$ and $f(1)=2$. Hence, by the intermediate value theorem, there would exist $t \in[0,1]$ such that $f(t)=0.5$, which contradicts the fact that γ lies in X.

Exercise 3

(1) The Wikipedia page for the Topologist's Sine Curve has a good picture.
(2) Use Exercise 4 on problem sheet 4.
(3) If T was path connected, there would exist a path $\gamma:[0,1] \rightarrow T$ such that $\gamma(0)=(1, \sin (1))$ and $\gamma(1)=(0,0)$, say. WLOG $\gamma(t)=(x(t), \sin (1 / x(t)))$ for $t \in[0,1)$, with $x(\cdot)$ continuous, $x(t) \rightarrow 0$ as $t \rightarrow 1$. Say $\epsilon=10^{-99}, \gamma$ being continuous, we would need to have $\|\gamma(t)\|=\|\gamma(t)-\gamma(1)\|<\epsilon$ for all t close enough to 1 i.e. $\left|\sin \left(x^{-1}\right)\right| \leq \|\left(x, \sin \left(x^{-1}\right) \|<\epsilon\right.$ for all x close enough to 0 . But that is clearly not the case.

