
Solutions to Problem Sheet 8

Exercise 1. In all three cases we compute the pointwise limit of the sequence
{fn}, say f . If this is not continuous then we know that the convergence cannot
be uniform (uniform convergence of continuous functions implies the limit is con-
tinuous). If it is then we must compute Mn = supx∈[0,1]|fn(x) − f(x)| and check
whether Mn → 0 as n→∞. If it does then the convergence is uniform, if not then
the convergence is not uniform.

(1) The pointwise limit on [0, 1] is the 0 function. If we rewrite fn(x) as ( 1
x +

n)−1 then it is easy to see that Mn = 1
n+1 since the supremum is obtained

at x = 1. Therefore Mn → 0 as n→∞ then the convergence is uniform on
[0, 1].

(2) In this case the pointwise limit is the function f where f(x) = 0 for x ∈ [0, 1)
and f(1) = 1

2 . Since f is not continuous the convergence of fn cannot be
uniform.

(3) First we need to find the pointwise limit. Clearly fn(0) = 0 for all n. Now

fix x ∈ (0, 1] and notice that n(1−x2)n
2 → 0 as n→∞ (because x is fixed

and less than or equal 1). Therefore the pointwise limit is the zero function
on [0, 1]. We now need to use some calculus to find Mn. We find the value
of x ∈ [0, 1] for which fn attains its maximum value (this exists because fn
is continuous (in fact differentiable) and [0,1] is compact). To do this we
can just differentiate fn and find when the derivative is 0 (on [0, 1]). In this

case f ′n(x) = n(1− x2)n
2−1(1− (2n2 + 1)x2). From this we see that x = 1

or 1
(2n2+1)1/2

. Since fn(1) = 0 we must have that

Mn = fn

(
1

(2n2 + 1)1/2

)
=

n

(2n2 + 1)1/2

(
1− 1

(2n2 + 1)

)n2

.

We know need to compute the limit of Mn as n tends to infinity. To do
this we just notice that we can rewrite the right hand side as follows.

n

(2n2 + 1)1/2

(
1− 1

(2n2 + 1)

)n2

=

(
1

(2 + 1/n2)1/2

)(
1− 1

(2n2 + 1)

)n2

.

Now we can see that the limit of Mn is the product of the limits of the two
brackets, the left hand one being 1√

2
and the right hand one being e−

1
2 .

Therefore the limit is 1√
2e
6= 0 so the convergence is not uniform.

Exercise 2. Let fn : R→ R be defined by

fn(x) =

{
0 if x ≤ 0,
1
n if x > 0.

Then the pointwise limit of the fns is the zero function on R, which is continuous,
and the convergence is uniform since 1/n→ 0 as n→∞.

Exercise 3. Let X = [1,+∞) and f : X → X defined by f(x) = x+ x−1.

(1) X is a closed subspace of R, which is complete so by lectures, X is complete.
(See solution of Exercise 17.2 in the second coursework.)
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(2) Let x, y ∈ X, x 6= y. We have

|f(x)− f(y)| = |x+ x−1 − y − y−1|

=

∣∣∣∣x− y +
y − x
xy

∣∣∣∣
= |x− y| ·

∣∣∣∣1− 1

xy

∣∣∣∣
< |x− y|

as 1 − 1
xy ∈ (0, 1) for x, y ∈ X. Remark that this does NOT mean that f

is a contraction.
(3) Let x ∈ X. Since f(x)− x = x−1 6= 0, we have f(x) 6= x.

Exercise 4. Let X be a topological space, let x0 ∈ X be a point. We consider
the set of loops based at the point x0, i.e. continuous maps γ : [0, 1]→ X such that
γ(0) = γ(1) = x0. Two loops γ1 and γ2 are called equivalent, and we write γ1 ∼ γ2,
if γ1 and γ2 are homotopic relatively to {0, 1}. (See solution to Exercise 5.2 in
Problem Sheet 7.) Via the same method of the solution of Exercise 4 in Problem
Sheet 6, one can show that ∼ is an equivalence relation on the set of loops based
at x0. We denote by π1(X,x0) the quotient set, i.e. the set of equivalence classes,
and by [γ] ∈ π1(X,x0) the equivalence class of the loop γ.

If γ1 and γ2 are two loops based at x0, we define the γ1 ∗γ2 by γ1 ∗γ2 : [0, 1]→ X

(γ1 ∗ γ2)(t)

{
γ1(2t) if 0 ≤ t ≤ 1

2 ,

γ2(2t− 1) if 1
2 ≤ t ≤ 1.

It is easy to check that γ1 ∗ γ2 is a loop based at x0. We need to prove that this
operation induce a well defined operation on π1(X,x0) by setting

[γ1] ∗ [γ2] := [γ1 ∗ γ2]

for all γ1 and γ2. In order to do that, we have to check that the equivalence class
of γ1 ∗ γ2 does not change if we replace γi with an equivalent loop, for both i = 1
and i = 2. So, suppose now that we have four loops γ1, δ1, γ2, δ2 based at x0 such
that γ1 ∼ δ1 and γ2 ∼ δ2. For i = 1, 2, let Hi be a homotopy between γi and δi, i.e.
Hi : [0, 1] × [0, 1] → X is a continuous map such that Hi(·, 0) = γi, Hi(·, 1) = δi,
Hi(0, ·) = Hi(1, ·) = x0; then consider H : [0, 1]× [0, 1]→ X defined by

H(t, s) =

{
H1(2t, s) if 0 ≤ t ≤ 1

2 ,

H2(2t− 1, s) if 1
2 ≤ t ≤ 1.

One can see that H is well defined because H1(1, s) = x0 = H2(0, s) for any
s ∈ [0, 1]. Since we are gluing continuous functions on the finite closed cover
{[0, 1/2]×[0, 1], [1/2]×[0, 1]} of the square [0, 1]×[0, 1], we have that H is continuous
by the pasting lemma. Moreover, it is clear that H(0, ·) = H(1, ·) = x0, H(·, 0) =
γ1 ∗ γ2 and H(·, 1) = δ1 ∗ δ2. In other words, H is a homotopy between γ1 ∗ γ2 and
δ1 ∗ δ2. Therefore γ1 ∗ γ2 ∼ δ1 ∗ δ2.

Identity element. Let e : [0, 1]→ X be the constant loop based at x0, i.e. e(t) =
x0 for any t ∈ [0, 1]. We have to prove that [e] is the identity element of π1(X,x0),
i.e. [γ] ∗ [e] = [e] ∗ [γ] = [γ] for any element [γ] ∈ π1(X,x0). Equivalently, we need
to show that γ ∗ e ∼ e ∗ γ ∼ γ for any γ loop based at x0. We see that

(e ∗ γ)(t) =

{
x0 = γ(0) if 0 ≤ t ≤ 1

2 ,

γ(2t− 1) if 1
2 ≤ t ≤ 1.
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Consider the function ψ : [0, 1]→ [0, 1] defined by

ψ(t) =

{
0 if 0 ≤ t ≤ 1

2 ,

2t− 1 if 1
2 ≤ t ≤ 1.

Notice that ψ is continuous. We see that e∗γ = γ ◦ψ. Consider the map H : [0, 1]×
[0, 1] → X defined by H(s, t) = γ((1 − s)t + sψ(t)) for any t, s ∈ [0, 1]. Since
H is built from compositions and sums of continuous functions, it is continuous.
Moreover, H(0, s) = γ(0) = x0 and H(1, s) = γ(1) = x0 for any s ∈ [0, 1], H(·, 0) =
γ and H(·, 1) = γ ◦ ψ = e ∗ γ. This means that H is a homotopy between γ and
e ∗ γ. Therefore e ∗ γ ∼ γ.

Proving that γ ∗ e ∼ γ is completely analogous. We consider the map η : [0, 1]→
[0, 1] defined by

ψ(t) =

{
2t if 0 ≤ t ≤ 1

2 ,

1 if 1
2 ≤ t ≤ 1.

We notice that γ ∗ e = γ ◦ ψ. We use the homotopy H defined by H(s, t) =
γ((1− s)t+ sη(t)).

Inverse. Let γ be a loop based at x0. We denote by γ−1 the loop defined by
γ−1(t) = γ(1 − t) for any t ∈ [0, 1]. We want to show that γ ∗ γ−1 ∼ e. Consider
H : [0, 1]× [0, 1]→ X defined by

H(t, s) =


γ(2t) if 0 ≤ t ≤ s/2
γ(s) if s/2 ≤ t ≤ 1− s/2
γ(2− 2t) if 1− s/2 ≤ t ≤ 1.

One can check that H is well-defined and continuous (we have decomposed the
square [0, 1] × [0, 1] into three triangles, this is a finite closed cover, so we can use
the pasting lemma) and H(t, 0) = x0 = e(t), H(t, 1) = (γ ∗ γ−1)(t), H(s, 0) = x0,
H(s, 1) = x0 for any s, t ∈ [0, 1]. This implies that γ ∗ γ−1 ∼ e.

It is obvious to notice that (γ−1)−1 = γ. So, if we apply what we have proved
to γ−1, we get γ−1 ∗ γ ∼ e.

Associativity. Let α, β, γ be three loops based at x0. We want to show that the
two loops δ := α ∗ (β ∗ γ) and ε := (α ∗ β) ∗ γ are equivalent. (Notice that these
two loops are different!) We have

δ(t) =

{
α(2t) if 0 ≤ t ≤ 1

2

(β ∗ γ)(2t− 1) if 1
2 ≤ t ≤ 1

=


α(2t) if 0 ≤ t ≤ 1

2

β(4t− 2) if 1
2 ≤ t ≤

3
4

γ(4t− 3) if 3
4 ≤ t ≤ 1

and

ε(t) =


α(4t) if 0 ≤ t ≤ 1

4

β(4t− 1) if 1
4 ≤ t ≤

1
2

γ(2t− 1) if 1
2 ≤ t ≤ 1.

Let us consider the function φ : [0, 1]→ [0, 1] defined by

φ(t) =


2t if 0 ≤ t ≤ 1

4

t+ 1
4 if 1

4 ≤ t ≤
1
2

t+1
2 if 1

2 ≤ t ≤ 1.

It is easy to see that φ is continuous map such that φ(0) = 0 and φ(1) = 1. (Actually
it is a homeomorphism of [0, 1] with itself.) One can check that ε = δ ◦ φ. Now



4

we consider the map H : [0, 1]× [0, 1]→ X defined by H(t, s) = δ(sφ(t) + (1− s)t)
for any t, s ∈ [0, 1]. Since H is built from compositions and sums of continuous
functions, it is continuous. Moreover H(0, ·) = δ(0) = x0, H(1, ·) = δ(1) = x0,
H(·, 0) = δ, H(·, 1) = δ ◦ φ = ε. Therefore H is a homotopy between δ and ε.

Exercise 5. In order to show that given a continuous map f : X → Y with
f(x0) = y0, we have that

f∗ : π1(X,x0)→ π1(Y, y0) [γ]→ [f ◦ γ]

is a well defined group homomorphism we have to show:

(1) if γ1 ∼ γ2 then f ◦ γ1 ∼ f ◦ γ2,
(2) f∗([γ1] ∗ [γ2]) = f∗[γ1] ∗ f∗[γ2],
(3) the identity [ex0

] gets mapped to the identity [ey0
].

None of this is difficult; in fact

(1) If H(t, s) is a homotopy between γ1(t) and γ2(t), then f ◦H is a homotopy
between f ◦ γ1 and f ◦ γ2.

(2) This is also immediate, in fact the operations of composition of paths and
inversion of paths are operations on the domain I = [0, 1] and so they com-
mutes with composition with continuous functions. Indeed, just remember
that γ1 ∗ γ2 : [0, 1]→ X is defined by

(γ1 ∗ γ2)(t) =

{
γ1(2t) if 0 ≤ t ≤ 1

2 ,

γ2(2t− 1) if 1
2 ≤ t ≤ 1.

And it follows immediately that f ◦ (γ1 ∗γ2) = (f ◦γ1)∗ (f ◦γ2) : [0, 1]→ Y .
(3) It’s just by definition of f∗.

Remark. We have proved that given a topological space X and a base point
x0 ∈ X we can associate to (X,x0) the group π1(X,x0) of loops based in x0 up
to homotopy. Moreover we have seen that given a continuous map between two
pointed topological spaces f : (X,x0)→ (Y, y0 = f(x0)) we have a homomorphism
of groups f∗ : π1(X,x0)→ π1(Y, y0). It is moreover not at all difficult to see that: if
we consider the identity idX : X → X, the induced morphism (idX)∗ on π1(X,x0)
is the identity; given two continuous maps of pointed topological spaces

(X,x0)
f // (Y, y0)

g // (Z, z0)

we have that (g ◦ f)∗ = g∗ ◦ f∗ : π1(X,x0)→ π1(Z, z0). This means that the funda-
mental group π1(−) is a so called functor from the category of pointed topological
spaces to the category of groups.

If X is a path connected topological space, with arguments of the same flavour
of those used in the last two exercises of this problem sheet, one can prove that
π1(X,x) ∼= π1(X,x′) for any x, x′ ∈ X. In this case one usually talks about the
fundamental group of X and writes π1(X).


