Solutions to Problem Sheet 8

Exercise 1. In all three cases we compute the pointwise limit of the sequence
{fn}, say f. If this is not continuous then we know that the convergence cannot
be uniform (uniform convergence of continuous functions implies the limit is con-
tinuous). If it is then we must compute M,, = sup,¢jo17|fn(2) — f(2)| and check
whether M,, — 0 as n — oo. If it does then the convergence is uniform, if not then
the convergence is not uniform.

(1) The pointwise limit on [0, 1] is the 0 function. If we rewrite f,(z) as (3 +
n)~! then it is easy to see that M,, = n%rl since the supremum is obtained
at « = 1. Therefore M,, — 0 as n — oo then the convergence is uniform on
[0, 1].

(2) In this case the pointwise limit is the function f where f(z) = 0 for x € [0,1)
and f(1) = % Since f is not continuous the convergence of f,, cannot be
uniform.

(3) First we need to find the pointwise limit. Clearly f,,(0) = 0 for all n. Now
fix ¢ € (0,1] and notice that n(1— x2)"2 — 0 as n — oo (because z is fixed
and less than or equal 1). Therefore the pointwise limit is the zero function
on [0,1]. We now need to use some calculus to find M,,. We find the value
of x € [0, 1] for which f,, attains its maximum value (this exists because f,
is continuous (in fact differentiable) and [0,1] is compact). To do this we
can just differentiate f,, and find when the derivative is 0 (on [0, 1]). In this
case f/(x) = n(l — 22)" ~1(1 — (2n% + 1)22). From this we see that z = 1

or W Since f,,(1) = 0 we must have that

2

1 1 "
Mn = f’n = n 1- .
(2n2 + 1)1/2 (2n2 +1)1/2 (2n%2+1)
We know need to compute the limit of M,, as n tends to infinity. To do
this we just notice that we can rewrite the right hand side as follows.

n 1 " 1 1 "
— (1 - —— =— 1= .
(2n* +1)1/2 ( (2n* + 1)) ((2 + 1/n2)1/2> ( (2n* + 1)>

Now we can see that the limit of M, is the product of the limits of the two
brackets, the left hand one being % and the right hand one being es.

Therefore the limit is \/% # 0 so the convergence is not uniform.

Exercise 2. Let f,,: R — R be defined by

oo s

if z > 0.

Then the pointwise limit of the f,,s is the zero function on R, which is continuous,
and the convergence is uniform since 1/n — 0 as n — oo.

Exercise 3. Let X = [1,+00) and f: X — X defined by f(z) =2 + 2~ L.

(1) X is a closed subspace of R, which is complete so by lectures, X is complete.
(See solution of Exercise 17.2 in the second coursework.)
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(2) Let z,y € X, x # y. We have
[f@) = f@)l=lz+27" —y—y7'|

— X
Ty
1
Ty
<z —yl

as 1 — %y € (0,1) for z,y € X. Remark that this does NOT mean that f
is a contraction.
(3) Let x € X. Since f(z) —x =271 #£ 0, we have f(z) # .

Exercise 4. Let X be a topological space, let g € X be a point. We consider
the set of loops based at the point xg, i.e. continuous maps «: [0,1] — X such that
v(0) = v(1) = xg. Two loops 1 and 7, are called equivalent, and we write 1 ~ 72,
if v1 and 72 are homotopic relatively to {0,1}. (See solution to Exercise 5.2 in
Problem Sheet 7.) Via the same method of the solution of Exercise 4 in Problem
Sheet 6, one can show that ~ is an equivalence relation on the set of loops based
at zo. We denote by (X, zg) the quotient set, i.e. the set of equivalence classes,
and by [y] € m1(X, zo) the equivalence class of the loop 7.

If 41 and 2 are two loops based at zq, we define the 71 xy2 by 71 *v2: [0,1] = X

71(2t) ifo<t<i,
Y2t —1) ifi<t<1

(71 % 72)(t) {

It is easy to check that ~; * 72 is a loop based at xg. We need to prove that this
operation induce a well defined operation on 1 (X, xo) by setting

(1] * [v2] = [y1 * 2]

for all v; and 7,. In order to do that, we have to check that the equivalence class
of 71 * 72 does not change if we replace ; with an equivalent loop, for both i =1
and ¢ = 2. So, suppose now that we have four loops 71, 61,72, d2 based at zy such
that 4, ~ &1 and 2 ~ do. For i = 1,2, let H; be a homotopy between ~; and §;, i.e.
H;: [0,1] x [0,1] — X is a continuous map such that H;(-,0) = ~;, H;(-,1) = d;,
H;(0,-) = H;(1,-) = xo; then consider H: [0,1] x [0,1] — X defined by

H(t.s) Hy(2t,s) ifo<t<i,
?S = .
Hy(2t—1,s) if 3 <t<1.

One can see that H is well defined because Hi(1l,s) = xo = Hz(0,s) for any
s € [0,1]. Since we are gluing continuous functions on the finite closed cover
{[0,1/2]%[0,1],[1/2] %[0, 1]} of the square [0, 1] x [0, 1], we have that H is continuous
by the pasting lemma. Moreover, it is clear that H(0,-) = H(1,-) = xo, H(-,0) =
v1 *v2 and H(-,1) = §1 * d2. In other words, H is a homotopy between 7 * o and
01 * 05. Therefore vy * vo ~ 01 * 0s.

Identity element. Let e: [0,1] — X be the constant loop based at xg, i.e. e(t) =
xo for any t € [0,1]. We have to prove that [e] is the identity element of 71 (X, x0),
ie. [7] x [e] = [e] * [y] = [7] for any element [y] € 71 (X, z¢). Equivalently, we need
to show that v *e ~ e *~ ~ « for any v loop based at z5. We see that

xo = (0 ifo<t<i,
(exmy=4 0 =10 H0<t<,
v(2t - 1) if 5 <t<1.



Consider the function ¢: [0,1] — [0, 1] defined by
0 ifo<t
-]

2% — 1 ifl<i<

IN

1
2
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Notice that ¢ is continuous. We see that exy = yot. Consider the map H: [0,1] x
[0,1] — X defined by H(s,t) = v((1 — s)t + sy(¢t)) for any ¢,s € [0,1]. Since
H is built from compositions and sums of continuous functions, it is continuous.
Moreover, H(0,s) = v(0) = zg and H(1,s) = y(1) =z for any s € [0,1], H(-,0) =
~vand H(-,1) = yo1 = e x~. This means that H is a homotopy between - and
e * 7. Therefore e x v ~ 7.

Proving that -y * e ~ 7 is completely analogous. We consider the map 7n: [0,1] —

[0,1] defined by
2t ifo<t<i
t) = -
Vo) {1 if 1 <t<1.
We notice that v x e = yo. We use the homotopy H defined by H(s,t) =
(1 = )t + sn(t)).
Inverse. Let 7 be a loop based at xy. We denote by 7~ ! the loop defined by

y~1(t) = (1 — t) for any ¢ € [0,1]. We want to show that v * y~! ~ e. Consider
H:[0,1] x [0,1] — X defined by

~(2t) if0<t<s/2
H(t,s) =< v(s) ifs/2<t<1-s5/2
V2 —2t)  ifl-s/2<t<]1.

One can check that H is well-defined and continuous (we have decomposed the
square [0,1] x [0, 1] into three triangles, this is a finite closed cover, so we can use
the pasting lemma) and H(¢,0) = zo = e(t), H(t,1) = (y x v~ 1)(¢), H(s,0) = o,
H(s,1) = zg for any s,t € [0,1]. This implies that y*y~! ~e.

It is obvious to notice that (y~)~! = ~. So, if we apply what we have proved
to vyt we get vl xy ~e.

Associativity. Let «, 3, be three loops based at xy3. We want to show that the
two loops § := a * (8 x ) and € := (a * () * v are equivalent. (Notice that these
two loops are different!) We have

5(t) = a(2t) ifo<t<i
S Brmet-1)  ifi<t<1
a(2t) fo<t<i
=pMt—-2) ifF<t<?
y(4t—3) if3<t<1

and
o(4t) ifo<t<g
e(t)=qBMAt—-1) ifi<t<i

vt —1) ifl<t<l

2t ifo<t<g
p(t) =qt+5 Hi<t<;
41 if1<t<1

2

It is easy to see that ¢ is continuous map such that ¢(0) = 0 and ¢(1) = 1. (Actually
it is a homeomorphism of [0,1] with itself.) One can check that ¢ = § o ¢. Now
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we consider the map H: [0,1] x [0,1] — X defined by H(t,s) = §(s¢(t) + (1 — s)t)
for any ¢,s € [0,1]. Since H is built from compositions and sums of continuous
functions, it is continuous. Moreover H(0,-) = 6(0) = zo, H(1,-) = (1) = o,
H(,0)=0, H(-,1) = 6 0 ¢ = €. Therefore H is a homotopy between § and e.

Exercise 5. In order to show that given a continuous map f: X — Y with
f(zo) = yo, we have that

Jer mi(X,20) = m1(Y,90) (V] = [f o]
is a well defined group homomorphism we have to show:

(1) if 71 ~ 72 then foy ~ fon,,

(2) fellnl = [el) = felml* filel,

(3) the identity [es,] gets mapped to the identity [e,,].
None of this is difficult; in fact

(1) If H(t, s) is a homotopy between 71 (t) and v2(t), then f o H is a homotopy
between fo~; and f o~s.

(2) This is also immediate, in fact the operations of composition of paths and
inversion of paths are operations on the domain I = [0, 1] and so they com-
mutes with composition with continuous functions. Indeed, just remember
that 1 *y2: [0,1] — X is defined by

71(21) ifo<t<s,
t) =
And it follows immediately that fo(y1*7y2) = (foy1)*(foy): [0,1] = Y.

(3) It’s just by definition of f,.

Remark. We have proved that given a topological space X and a base point
xg € X we can associate to (X, zg) the group m(X,zq) of loops based in zy up
to homotopy. Moreover we have seen that given a continuous map between two
pointed topological spaces f: (X, 2z9) = (Y,y0 = f(x0)) we have a homomorphism
of groups fi: m1(X,z0) = m1 (Y, y0). It is moreover not at all difficult to see that: if
we consider the identity idx : X — X, the induced morphism (idx). on m (X, zo)
is the identity; given two continuous maps of pointed topological spaces

(X, 20) — (Y, 90) —> (Z, 20)

we have that (go f). = g« 0 fu: m1 (X, 20) = m1(Z, 20). This means that the funda-
mental group m (—) is a so called functor from the category of pointed topological
spaces to the category of groups.

If X is a path connected topological space, with arguments of the same flavour
of those used in the last two exercises of this problem sheet, one can prove that
m(X,z) & m(X,2') for any x,2’ € X. In this case one usually talks about the
fundamental group of X and writes w1 (X).



