M2PM5 METRIC SPACES AND TOPOLOGY SPRING 2016

PROBLEM SHEET 6

Exercise 1. Let X denote the space of all continuous real-valued functions on [a, b] equipped with the sup metric:

$$d(f,g) = \sup_{s \in [a,b]} |f(s) - g(s)|$$

Is X path-connected? Is X connected?

Exercise 2. (The Pasting Lemma) Let X and Y be topological spaces, let A and B be subsets of X such that $X = A \cup B$, and let $f: X \to Y$ be a map.

- (1) Suppose that A and B are open, and that $f|_A \colon A \to Y$ and $f|_B \colon B \to Y$ are continuous. Show that f is continuous.
- (2) Suppose that A and B are closed, and that $f|_A \colon A \to Y$ and $f|_B \colon B \to Y$ are continuous. Show that f is continuous.

Exercise 3. Let X be a topological space and let x_0 , x_1 be points of X. Let γ_0 , γ_1 be paths in X from x_0 to x_1 . A homotopy from γ_0 to γ_1 is a continuous map $H: [0, 1] \times [0, 1] \to X$ such that:

- $H(s,0) = \gamma_0(s)$ for all $s \in [0,1];$
- $H(s, 1) = \gamma_1(s)$ for all $s \in [0, 1];$
- $H(0,t) = x_0$ for all $t \in [0,1];$
- $H(1,t) = x_1$ for all $t \in [0,1]$.

You can think of a homotopy H as a family of paths γ_t , $t \in [0, 1]$, defined by $\gamma_t(s) = H(s, t)$, which interpolates continuously between γ_0 and γ_1 . The third and fourth conditions here say that each γ_t is a path from x_0 to x_1 . We say that paths γ_0 and γ_1 are *homotopic* if and only if there exists a homotopy from γ_0 to γ_1 .

- (1) Show that any two paths in \mathbb{R}^2 with the same endpoints x_0 and x_1 are homotopic.
- (2) Let D be a convex subset of \mathbb{R}^n . Show that any two paths in D with the same endpoints x_0 and x_1 are homotopic.

Exercise 4. Let γ_1 and γ_2 be paths in a topological space X. Write $\gamma_1 \sim \gamma_2$ if and only if γ_1 is homotopic to γ_2 . Show that \sim is an equivalence relation.