M2PM5 METRIC SPACES AND TOPOLOGY SPRING 2016

PROBLEM SHEET 6

Exercise 1. Let X denote the space of all continuous real-valued functions on $[a, b]$ equipped with the sup metric:

$$
d(f, g)=\sup _{s \in[a, b]}|f(s)-g(s)|
$$

Is X path-connected? Is X connected?

Exercise 2. (The Pasting Lemma) Let X and Y be topological spaces, let A and B be subsets of X such that $X=A \cup B$, and let $f: X \rightarrow Y$ be a map.
(1) Suppose that A and B are open, and that $\left.f\right|_{A}: A \rightarrow Y$ and $\left.f\right|_{B}: B \rightarrow Y$ are continuous. Show that f is continuous.
(2) Suppose that A and B are closed, and that $\left.f\right|_{A}: A \rightarrow Y$ and $\left.f\right|_{B}: B \rightarrow Y$ are continuous. Show that f is continuous.

Exercise 3. Let X be a topological space and let x_{0}, x_{1} be points of X. Let γ_{0}, γ_{1} be paths in X from x_{0} to x_{1}. A homotopy from γ_{0} to γ_{1} is a continuous map $H:[0,1] \times[0,1] \rightarrow X$ such that:

- $H(s, 0)=\gamma_{0}(s)$ for all $s \in[0,1]$;
- $H(s, 1)=\gamma_{1}(s)$ for all $s \in[0,1]$;
- $H(0, t)=x_{0}$ for all $t \in[0,1]$;
- $H(1, t)=x_{1}$ for all $t \in[0,1]$.

You can think of a homotopy H as a family of paths $\gamma_{t}, t \in[0,1]$, defined by $\gamma_{t}(s)=H(s, t)$, which interpolates continuously between γ_{0} and γ_{1}. The third and fourth conditions here say that each γ_{t} is a path from x_{0} to x_{1}. We say that paths γ_{0} and γ_{1} are homotopic if and only if there exists a homotopy from γ_{0} to γ_{1}.
(1) Show that any two paths in \mathbb{R}^{2} with the same endpoints x_{0} and x_{1} are homotopic.
(2) Let D be a convex subset of \mathbb{R}^{n}. Show that any two paths in D with the same endpoints x_{0} and x_{1} are homotopic.

Exercise 4. Let γ_{1} and γ_{2} be paths in a topological space X. Write $\gamma_{1} \sim \gamma_{2}$ if and only if γ_{1} is homotopic to γ_{2}. Show that \sim is an equivalence relation.

