M2PM5 METRIC SPACES AND TOPOLOGY SPRING 2017

PROBLEM SHEET 7

Exercise 1. Prove that the open interval (0, 1) is not sequentially compact.

Exercise 2. We say that a metric space X is *totally bounded* if and only if for each $\epsilon > 0$ there exist finitely many points $x_1, \ldots, x_N \in X$ such that:

$$B_{\epsilon}(x_1),\ldots,B_{\epsilon}(x_N)$$

is a cover of X. Show that a metric space X is compact if and only if it is complete and totally bounded.

(Hint: for one direction, show that complete and totally bounded implies sequentially compact.)

Exercise 3. Let X be a sequentially compact metric space and $V_1 \supseteq V_2 \supseteq \cdots$ be a sequence of nested closed subsets of X. Show that

diam
$$\left(\bigcap_{n=1}^{\infty} V_n\right) = \inf \{ \operatorname{diam}(V_n) : n = 1, 2, \dots \}.$$

Exercise 4. Recall the definition of *homotopy of paths* from Problem Sheet 6. Give an explicit homotopy between the following paths in \mathbb{R}^2 :

$$f: [0,1] \longrightarrow \mathbb{R}^2 \qquad g: [0,1] \longrightarrow \mathbb{R}^2 t \longmapsto (\cos \pi t, \sin \pi t) \qquad t \longmapsto (\cos \pi t, -\sin \pi t)$$

Exercise 5. We say that a subspace D of \mathbb{R}^n is *star-shaped* if and only if there exists a point $x_0 \in D$ such that, for all $x \in D$, the straight line segment from x_0 to x lies entirely within D. Let D be a star-shaped subspace of \mathbb{R}^n .

- (1) Show that D is path-connected.
- (2) Show that every path in D is homotopic to a constant path.