Solutions to Problem Sheet 6

Exercise 1. We need to show that for any $f, g \in C([a, b])$ there exists a continuous path

$$
\gamma:[0,1] \rightarrow C([a, b])
$$

such that $\gamma(0)=g$ and $\gamma(1)=f$. Let us define γ as follows

$$
\gamma(t)=t \cdot f+(1-t) \cdot g
$$

As we wanted $\gamma(0)=g$ and $\gamma(1)=1$ so we are just left to prove that the path is continuous at any $t_{0} \in[0,1]$ i.e.,

$$
\forall \epsilon>0, \exists \delta>0:\left|t_{0}-t_{1}\right|<\delta \Longrightarrow d_{\infty}\left(\gamma\left(t_{0}\right), \gamma\left(t_{1}\right)\right)<\epsilon
$$

Choose $\delta<\epsilon / d_{\infty}(f, g)$, then for any $s \in[a, b]$ we have

$$
\begin{array}{r}
\left|t_{0} f(s)+\left(1-t_{0}\right) g(s)-\left(t_{1} f(s)+\left(1-t_{1}\right) g(s)\right)\right|=\left|\left(t_{0}-t_{1}\right)(f(s)-g(s))\right| \leq \\
\leq\left|t_{0}-t_{1}\right||f(s)-g(s)|
\end{array}
$$

And so taking the sup on both sides,

$$
d_{\infty}\left(\gamma\left(t_{0}\right), \gamma\left(t_{1}\right)\right) \leq\left|t_{0}-t_{1}\right| d_{\infty}(f, g)<\epsilon
$$

$C([a, b])$ is then path connected and so in particular connected.

Exercise 2. (1) Let $U \subseteq Y$ be an open subset. We need to check that the pre-image $f^{-1}(U)$ is open in X.

Since $\left.f\right|_{A}: A \rightarrow Y$ is continuous, the pre-image $\left(\left.f\right|_{A}\right)^{-1}(U)$ is open in A. Since A is open in X, this means that $\left(\left.f\right|_{A}\right)^{-1}(U)$ is open in X. But we clearly see that $\left(\left.f\right|_{A}\right)^{-1}(U)=f^{-1}(U) \cap A$. So we have that $f^{-1}(U) \cap A$ is open in X.

In the same way as above we show that $f^{-1}(U) \cap B$ is open in X. Since $X=A \cup B$, we have $f^{-1}(U)=\left(f^{-1}(U) \cap A\right) \cup\left(f^{-1}(U) \cap B\right)$. This means that $f^{-1}(U)$ is the union of two open subsets of X, hence it is an open subset of X.
[Remark: the same proof works for an arbitrary open cover of X.]
(2) We want to show that $f: X \rightarrow Y$ is continuous by showing that the pre-image of every closed subset of Y is a closed subset of X (this is an equivalent condition for continuity!). The proof is very similar to (1). Let $Z \subseteq Y$ be an open subset.

Since $\left.f\right|_{A}: A \rightarrow Y$ is continuous, the pre-image $\left(\left.f\right|_{A}\right)^{-1}(Z)$ is closed in A. Since A is closed in X, this means that $\left(\left.f\right|_{A}\right)^{-1}(Z)=f^{-1}(A) \cap Z$ is closed in X. Analogously $f^{-1}(B) \cap Z$ is closed in X.

Since $X=A \cup B$, we have $f^{-1}(Z)=\left(f^{-1}(Z) \cap A\right) \cup\left(f^{-1}(Z) \cap B\right)$. This means that $f^{-1}(Z)$ is the union of two closed subsets of X, hence it is a closed subset of X.
[Remark: the same proof works for any finite closed cover of X. Actually it works for any locally finite closed cover of X. Try to find a counterexample to the pasting lemma in the case of an infinite closed cover... see problem sheet 2]

Exercise 3. Since \mathbb{R}^{2} is itself convex, it is enough to consider the case in which we work inside a convex subset $D \subseteq \mathbb{R}^{n}$. By a convex subset we mean a subset D of \mathbb{R}^{n} such that, whenever we choose two points x and y in D, the segment between x and y is contained in D, i.e. for any $t \in[0,1]$ we have $(1-t) x+t y \in D$.

So let $\gamma_{0}:[0,1] \rightarrow D$ and $\gamma_{1}:[0,1] \rightarrow D$ be two paths with the same endpoints x_{0} and x_{1}, i.e. $\gamma_{0}(0)=\gamma_{1}(0)=x_{0}$ and $\gamma_{0}(1)=\gamma_{1}(1)=x_{1}$. We want to construct a homotopy $H:[0,1] \times[0,1] \rightarrow D$ between these two paths. As suggested by the text
we want that the family of paths $\gamma_{t}=H(\cdot, t)$, as $t \in[0,1]$, interpolates between γ_{0} and γ_{1}, so for any $s \in[0,1]$ and $t \in[0,1]$ we want that $\gamma_{t}(s)=H(s, t)$ lies on the segment between $\gamma_{0}(s)$ and $\gamma_{1}(s)$, because we want to use the fact that D is convex. So let's consider the map $H:[0,1] \times[0,1] \rightarrow D$ defined by

$$
H(s, t)=(1-t) \gamma_{0}(s)+t \gamma_{1}(s)
$$

for any $s, t \in[0,1]$. It is well-defined because D is convex. It is obvious that H satisfies the four properties we want. The only non-trivial thing is to show that H is continuous.

In order to show that H is continuous one can use the $\varepsilon \& \delta$ approach. Fix an arbitrary point $(\bar{s}, \bar{t}) \in[0,1] \times[0,1]$ and fix $\varepsilon>0$. We want to show that there exists a neighbourhood U of (\bar{s}, \bar{t}) such that the image of U along H is contained in the ball of radius ε centred in $H(\bar{s}, \bar{t})$, i.e. $H(U) \subseteq B_{\varepsilon}(H(\bar{s}, \bar{t}))$. For any $i=0,1$, since γ_{i} is continuous in \bar{s} we get that there exists $\delta_{i}>0$ such that

$$
|s-\bar{s}|<\delta_{i} \Longrightarrow\left\|\gamma_{i}(s)-\gamma_{i}(\bar{s})\right\|<\varepsilon / 3 .
$$

We have

$$
\begin{aligned}
H(s, t) & -H(\bar{s}, \bar{t})=H(s, t)-H(\bar{s}, t)+H(\bar{s}, t)-H(\bar{s}, \bar{t}) \\
& =(1-t)\left(\gamma_{0}(s)-\gamma_{0}(\bar{s})\right)+t\left(\gamma_{1}(s)-\gamma_{1}(\bar{s})\right)+(\bar{t}-t)\left(\gamma_{0}(\bar{s})-\gamma_{1}(\bar{s})\right) .
\end{aligned}
$$

For brevity set $C=\left\|\gamma_{0}(\bar{s})-\gamma_{1}(\bar{s})\right\| \geq 0$ and $\delta=\min \left\{\delta_{0}, \delta_{1}\right\}$. We see that if $|s-\bar{s}|<\delta$ then

$$
\|H(s, t)-H(\bar{s}, \bar{t})\| \leq \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+|t-\bar{t}| C .
$$

Now set $0<\delta^{*} \leq \varepsilon /(3 C)$ (in the case $C=0$ we allow δ^{*} to be any positive real number). It is clear that if $(s, t) \in[0,1] \times[0,1]$ is such that $|t-\bar{t}|<\delta^{*}$ and $|s-\bar{s}|<\delta$ then $\|H(s, t)-H(\bar{s}, \bar{t})\|<\varepsilon$. So we can take

$$
U=\left\{(s, t) \in[0,1] \times[0,1]| | t-\bar{t}\left|<\delta^{*},|s-\bar{s}|<\delta\right\}\right.
$$

which is clearly an open neighbourhood of (\bar{s}, \bar{t}) in $[0,1] \times[0,1]$.
[Remark: There is also a more conceptual way to show that H is continuous: this is based by observing that H is defined by sums, products and compositions of continuous functions. More precisely, we start by observing that the scalar multiplication $\cdot: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ and the sum $+: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are continuous (convince yourself about this!). Now consider the (obviously continuous) function $\varphi_{0}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $\varphi_{0}(t)=1-t$ for any $t \in[0,1]$. Since $\gamma_{0}:[0,1] \rightarrow \mathbb{R}^{n}$ is continuous, by the properties of the product topology we know that the map $\gamma_{0} \times \varphi_{0}:[0,1] \times[0,1] \rightarrow \mathbb{R}^{n} \times \mathbb{R}$, defined by $\gamma_{0} \times \varphi_{0}:(s, t) \mapsto\left(\gamma_{0}(s), 1-t\right)$, is continuous. By composing $\gamma_{0} \times \varphi_{0}$ with \cdot, we obtain that the map $\psi_{0}:[0,1] \times[0,1] \rightarrow$ \mathbb{R}^{n}, defined by $\psi_{0}:(s, t) \mapsto(1-t) \gamma_{0}(s)$, is continuous. In a similar way one can show that the map $\psi_{1}:[0,1] \times[0,1] \rightarrow \mathbb{R}^{n}$, defined by $\psi_{1}:(s, t) \mapsto t \gamma_{1}(s)$, is continuous. By the properties of the product topology we have that the map $\left(\psi_{0}, \psi_{1}\right):[0,1] \times[0,1] \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$, defined by $\left(\psi_{0}, \psi_{1}\right):(s, t) \mapsto\left(\psi_{0}(s, t), \psi_{1}(s, t)\right)$, is continuous. Now we compose $\left(\psi_{0}, \psi_{1}\right)$ with + and we get H.]

Exercise 4.

reflexivity: The constant homotopy is a homotopy from $\gamma_{0}(s)$ to itself, i.e., define

$$
H(s, t)=\gamma_{0}(s) \text { for all } s \in[0,1] \text { and for all } t \in[0,1] .
$$

$H(s, t)$ it is obviously continuous and such that all the conditions are satisfied.
symmetry: Let $H(s, t)$ be an homotopy from $\gamma_{0}(s)$ to $\gamma_{1}(s)$ then we have an homotopy from $\gamma_{1}(s)$ to $\gamma_{0}(s)$ defined by

$$
G(s, t)=H(s, 1-t)
$$

This G we just defined is an homotopy, in fact

- $G(s, t)$ is continuous for all $(s, t) \in[0,1] \times[0,1]$: indeed $H(s, t)$ is continuous, $f(t)=1-t$ in continuous and so is $H(s, f(t))$.
- $G(s, 0)=H(s, 1)=\gamma_{1}(s)$ for all $s \in[0,1]$;
- $G(s, 1)=H(s, 0)=\gamma_{0}(s)$ for all $s \in[0,1]$;
- $G(0, t)=H(0,1-t)=x_{0}$ for all $t \in[0,1]$;
- $G(1, t)=H(1,1-t)=x_{1}$ for all $t \in[0,1]$;
transitivity: Let $H^{1}(s, t)$ be the homotopy from $\gamma_{0}(s)$ to $\gamma_{1}(s)$ and $H^{2}(s, t)$ be the homotopy from $\gamma_{1}(s)$ to $\gamma_{2}(s)$, then we have an homotopy $G(s, t)$ from $\gamma_{0}(s)$ to $\gamma_{2}(s)$ defined by

$$
G(s, t)=\left\{\begin{array}{l}
H^{1}(s, 2 t) \text { for all } s \in[0,1] \text { and for } t \in[0,1 / 2] \\
H^{2}(s, 2 t-1) \text { for all } s \in[0,1] \text { and for } t \in[1 / 2,1]
\end{array}\right.
$$

This G we just defined is an homotopy, in fact

- $G(s, t)$ is continuous by Exercise 2.2 because $\{[0,1] \times[0,1 / 2],[0,1] \times$ $[1 / 2,1]\}$ is a closed cover of the square $[0,1] \times[0,1]$;
- $G(s, 0)=H^{1}(s, 0)=\gamma_{0}(s)$ for all $s \in[0,1]$;
- $G(s, 1)=H^{2}(s, 1)=\gamma_{2}(s)$ for all $s \in[0,1]$;
- $G(0, t)=x_{0}$ for all $t \in[0,1]$; and $G(1, t)=x_{1}$ for all $t \in[0,1]$ it is as well clear from the definition of $G(s, t)$.

