
Solutions to Problem Sheet 6

Exercise 1. We need to show that for any f, g ∈ C([a, b]) there exists a contin-
uous path

γ : [0, 1]→ C([a, b])

such that γ(0) = g and γ(1) = f. Let us define γ as follows

γ(t) = t · f + (1− t) · g.
As we wanted γ(0) = g and γ(1) = 1 so we are just left to prove that the path is
continuous at any t0 ∈ [0, 1] i.e.,

∀ ε > 0, ∃ δ > 0 : |t0 − t1| < δ =⇒ d∞(γ(t0), γ(t1)) < ε

Choose δ < ε/d∞(f, g), then for any s ∈ [a, b] we have

|t0f(s) + (1− t0)g(s)− (t1f(s) + (1− t1)g(s))| = |(t0 − t1)(f(s)− g(s))| ≤
≤ |t0 − t1||f(s)− g(s)|

And so taking the sup on both sides,

d∞(γ(t0), γ(t1)) ≤ |t0 − t1|d∞(f, g) < ε.

C([a, b]) is then path connected and so in particular connected.

Exercise 2. (1) Let U ⊆ Y be an open subset. We need to check that the
pre-image f−1(U) is open in X.

Since f |A : A → Y is continuous, the pre-image (f |A)−1(U) is open in A. Since
A is open in X, this means that (f |A)−1(U) is open in X. But we clearly see that
(f |A)−1(U) = f−1(U) ∩A. So we have that f−1(U) ∩A is open in X.

In the same way as above we show that f−1(U)∩B is open inX. SinceX = A∪B,
we have f−1(U) = (f−1(U) ∩ A) ∪ (f−1(U) ∩ B). This means that f−1(U) is the
union of two open subsets of X, hence it is an open subset of X.

[Remark: the same proof works for an arbitrary open cover of X.]

(2) We want to show that f : X → Y is continuous by showing that the pre-image
of every closed subset of Y is a closed subset of X (this is an equivalent condition
for continuity!). The proof is very similar to (1). Let Z ⊆ Y be an open subset.

Since f |A : A→ Y is continuous, the pre-image (f |A)−1(Z) is closed in A. Since
A is closed in X, this means that (f |A)−1(Z) = f−1(A)∩Z is closed in X. Analo-
gously f−1(B) ∩ Z is closed in X.

Since X = A ∪B, we have f−1(Z) = (f−1(Z) ∩A) ∪ (f−1(Z) ∩B). This means
that f−1(Z) is the union of two closed subsets of X, hence it is a closed subset of
X.

[Remark: the same proof works for any finite closed cover of X. Actually it
works for any locally finite closed cover of X. Try to find a counterexample to the
pasting lemma in the case of an infinite closed cover... see problem sheet 2]

Exercise 3. Since R2 is itself convex, it is enough to consider the case in which
we work inside a convex subset D ⊆ Rn. By a convex subset we mean a subset D of
Rn such that, whenever we choose two points x and y in D, the segment between
x and y is contained in D, i.e. for any t ∈ [0, 1] we have (1− t)x+ ty ∈ D.

So let γ0 : [0, 1] → D and γ1 : [0, 1] → D be two paths with the same endpoints
x0 and x1, i.e. γ0(0) = γ1(0) = x0 and γ0(1) = γ1(1) = x1. We want to construct a
homotopy H : [0, 1]× [0, 1]→ D between these two paths. As suggested by the text
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we want that the family of paths γt = H(·, t), as t ∈ [0, 1], interpolates between
γ0 and γ1, so for any s ∈ [0, 1] and t ∈ [0, 1] we want that γt(s) = H(s, t) lies on
the segment between γ0(s) and γ1(s), because we want to use the fact that D is
convex. So let’s consider the map H : [0, 1]× [0, 1]→ D defined by

H(s, t) = (1− t)γ0(s) + tγ1(s)

for any s, t ∈ [0, 1]. It is well-defined because D is convex. It is obvious that H
satisfies the four properties we want. The only non-trivial thing is to show that H
is continuous.

In order to show that H is continuous one can use the ε& δ approach. Fix an
arbitrary point (s̄, t̄) ∈ [0, 1] × [0, 1] and fix ε > 0. We want to show that there
exists a neighbourhood U of (s̄, t̄) such that the image of U along H is contained
in the ball of radius ε centred in H(s̄, t̄), i.e. H(U) ⊆ Bε(H(s̄, t̄)). For any i = 0, 1,
since γi is continuous in s̄ we get that there exists δi > 0 such that

|s− s̄| < δi =⇒ ‖γi(s)− γi(s̄)‖ < ε/3.

We have

H(s, t)−H(s̄, t̄) = H(s, t)−H(s̄, t) +H(s̄, t)−H(s̄, t̄)

= (1− t)(γ0(s)− γ0(s̄)) + t(γ1(s)− γ1(s̄)) + (t̄− t)(γ0(s̄)− γ1(s̄)).

For brevity set C = ‖γ0(s̄) − γ1(s̄)‖ ≥ 0 and δ = min{δ0, δ1}. We see that if
|s− s̄| < δ then

‖H(s, t)−H(s̄, t̄)‖ ≤ ε

3
+
ε

3
+ |t− t̄|C.

Now set 0 < δ∗ ≤ ε/(3C) (in the case C = 0 we allow δ∗ to be any positive real
number). It is clear that if (s, t) ∈ [0, 1]×[0, 1] is such that |t− t̄| < δ∗ and |s−s̄| < δ
then ‖H(s, t)−H(s̄, t̄)‖ < ε. So we can take

U = {(s, t) ∈ [0, 1]× [0, 1] | |t− t̄| < δ∗, |s− s̄| < δ}

which is clearly an open neighbourhood of (s̄, t̄) in [0, 1]× [0, 1].
[Remark: There is also a more conceptual way to show that H is continuous:

this is based by observing that H is defined by sums, products and compositions
of continuous functions. More precisely, we start by observing that the scalar
multiplication · : Rn × R → Rn and the sum +: Rn × Rn → Rn are continuous
(convince yourself about this!). Now consider the (obviously continuous) function
ϕ0 : R → R defined by ϕ0(t) = 1 − t for any t ∈ [0, 1]. Since γ0 : [0, 1] → Rn

is continuous, by the properties of the product topology we know that the map
γ0 × ϕ0 : [0, 1] × [0, 1] → Rn × R, defined by γ0 × ϕ0 : (s, t) 7→ (γ0(s), 1− t), is
continuous. By composing γ0×ϕ0 with ·, we obtain that the map ψ0 : [0, 1]×[0, 1]→
Rn, defined by ψ0 : (s, t) 7→ (1 − t)γ0(s), is continuous. In a similar way one can
show that the map ψ1 : [0, 1] × [0, 1] → Rn, defined by ψ1 : (s, t) 7→ tγ1(s), is
continuous. By the properties of the product topology we have that the map
(ψ0, ψ1) : [0, 1] × [0, 1] → Rn × Rn, defined by (ψ0, ψ1) : (s, t) 7→ (ψ0(s, t), ψ1(s, t)),
is continuous. Now we compose (ψ0, ψ1) with + and we get H.]

Exercise 4.

reflexivity: The constant homotopy is a homotopy from γ0(s) to itself, i.e., define

H(s, t) = γ0(s) for all s ∈ [0, 1] and for all t ∈ [0, 1].

H(s, t) it is obviously continuous and such that all the conditions are sat-
isfied.
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symmetry: Let H(s, t) be an homotopy from γ0(s) to γ1(s) then we have an
homotopy from γ1(s) to γ0(s) defined by

G(s, t) = H(s, 1− t).
This G we just defined is an homotopy, in fact
• G(s, t) is continuous for all (s, t) ∈ [0, 1] × [0, 1]: indeed H(s, t) is

continuous, f(t) = 1− t in continuous and so is H(s, f(t)).
• G(s, 0) = H(s, 1) = γ1(s) for all s ∈ [0, 1];
• G(s, 1) = H(s, 0) = γ0(s) for all s ∈ [0, 1];
• G(0, t) = H(0, 1− t) = x0 for all t ∈ [0, 1];
• G(1, t) = H(1, 1− t) = x1 for all t ∈ [0, 1];

transitivity: Let H1(s, t) be the homotopy from γ0(s) to γ1(s) and H2(s, t) be
the homotopy from γ1(s) to γ2(s), then we have an homotopy G(s, t) from
γ0(s) to γ2(s) defined by

G(s, t) =

{
H1(s, 2t) for all s ∈ [0, 1] and for t ∈ [0, 1/2]

H2(s, 2t− 1) for all s ∈ [0, 1] and for t ∈ [1/2, 1]

This G we just defined is an homotopy, in fact
• G(s, t) is continuous by Exercise 2.2 because {[0, 1] × [0, 1/2], [0, 1] ×

[1/2, 1]} is a closed cover of the square [0, 1]× [0, 1];
• G(s, 0) = H1(s, 0) = γ0(s) for all s ∈ [0, 1];
• G(s, 1) = H2(s, 1) = γ2(s) for all s ∈ [0, 1];
• G(0, t) = x0 for all t ∈ [0, 1]; and G(1, t) = x1 for all t ∈ [0, 1] it is as

well clear from the definition of G(s, t).


