Solutions to Problem Sheet 7

Exercise 1. Let us consider the sequence $\left\{x_{n}:=1 / n\right\}_{n>0}$. For any $n, x_{n} \in$ $(0,1)$, but 0 , which is the limit of the sequence, is not in the open interval. Moreover, as the sequence converges to 0 , any subsequence $\left\{x_{n_{k}}\right\}$ will converge again to 0 . We then found a sequence $\left\{x_{n}\right\}_{n>0}$ is in $(0,1)$ which does not admit any subsequence which converges in $(0,1)$. Thus the open interval is not sequentially compact.

Exercise 2.

(\Rightarrow) If X is compact, then any open cover has an finite open sub-cover. In particular, consider for $\epsilon>0$ the open cover $\left\{B_{\epsilon}(x) ; x \in X\right\}$. Thus X is totally bounded.

Now, to show that X is complete we need to show that any Cauchy sequence is convergent. X compact $\Longleftrightarrow X$ sequentially compact, so given $\left\{x_{n}\right\}_{n>0}$ there exists a subsequence $\left\{x_{n_{k}}\right\} \subseteq\left\{x_{n}\right\}$ which converges to a certain $x \in X$. But in fact $\left\{x_{n}\right\}$ itself convergent to that $x \in X$. Indeed, fix $\epsilon>0$, then for any $n, n_{k}>N(\epsilon)$ we have

$$
d_{X}\left(x_{n}, x\right) \leq d_{X}\left(x_{n}, x_{n_{k}}\right)+d_{X}\left(x_{n_{k}}, x\right)<\epsilon / 2+\epsilon / 2
$$

where the first is the triangular inequality and the second follows from the fact that the sequence is Cauchy and the subsequence is convergent.
(\Leftarrow) Conversely, assume X is totally bounded. For metric spaces, sequential compactness is equivalent to compactness. Thus we aim to show that X is sequentially compact. Let $\left(x_{n}\right)_{n \geq 0}$ be a sequence in X. We aim to show it has a convergent subsequence.

As X is totally bounded that there exists a finite set of indices, say n_{1}, \ldots, n_{k} such that $X=\bigcup_{i=1}^{k} B_{1}\left(x_{n_{i}}\right)$. By pigeon-hole principle, one of the balls must contain infinitely many terms of $\left(x_{n}\right)$. This defines a subsequence of $\left(x_{n}\right)$ which we call $\left(x_{1 n}\right)$. By definition $\left(x_{1 n}\right)$ is contained in a ball of radius 1 .

We apply the same argument to balls of radius $1 / 2$ and $\left(x_{1 n}\right)$. This gives a subsequence $\left(x_{2 n}\right)$ contained in a ball of radius $1 / 2$. Continuing in the same fashion we obtain subsequences $\left(x_{k n}\right)$ contained in balls of radius $1 / k$.

Now, use a diagonal argument. For $k \geq 0$, define $x_{k}^{*}:=x_{k k}$. We claim that $\left(x_{k}^{*}\right)_{k \geq 0}$ is a convergent subsequence. Indeed, let $\epsilon>0$. Take N such that $1 / N<\epsilon$ then for any $k \geq N$, all the x_{k} 's are contained in a ball of radius $1 / N<\epsilon$. So $\left(x_{k}^{*}\right)_{k \geq 0}$ is Cauchy, and hence convergent. Q.E.D.

Exercise 3. We begin by proving the following lemma.
Lemma. Let X be a compact metric space and $V_{1} \supseteq V_{2} \supseteq \cdots$ be a sequence of nested closed subsets of X. Consider the intersection

$$
V_{\infty}=\bigcap_{n=1}^{\infty} V_{n} .
$$

If $f: X \rightarrow \mathbb{R}$ is a continuous function then

$$
\begin{equation*}
\sup _{V_{\infty}} f=\inf \left\{\sup _{V_{n}} f \mid n \geq 1\right\} \tag{1}
\end{equation*}
$$

Proof of the Lemma. If one of the V_{n} is empty, then V_{∞} is empty and then $\sup _{V_{\infty}} f=-\infty$ and $\sup _{V_{n}} f=-\infty$. Thus the equality is obvious.

We may assume that V_{n} is non-empty for any n. By Exercise 3 in Problem Sheet 4 we know that V_{∞} is non-empty. For any $n \geq 1$, we have that $V_{\infty} \subseteq V_{n}$ which implies that $\sup _{V_{\infty}} f \leq \sup _{V_{n}} f$; since this holds for any n we have shown the inequality \leq in (1).

Now we want to prove the inequality \geq in (1). Now let us fix $n \geq 1$. As V_{n} is closed in the compact topological space X, we know that V_{n} is compact. This implies that f attains maximum over V_{n}; in other words there exists $x_{n} \in V_{n}$ such that $f\left(x_{n}\right)=\sup _{V_{n}} f$. We have constructed the sequence $\left\{x_{n}\right\}_{n \geq 1}$. We notice that the sequence $\left\{f\left(x_{n}\right)\right\}_{n \geq 1}$ is (weakly) decreasing sequence of real numbers converging to the right hand side in (1).

As X is a compact metric space, it is sequentially compact. Therefore it is possible to extract a convergent subsequence $\left\{x_{n_{k}}\right\}_{k \geq 1}$ from the sequence $\left\{x_{n}\right\}_{n \geq 1}$. Let $\bar{x} \in X$ denote the limit of this convergent subsequence. We want to prove that \bar{x} lies in V_{∞}. Let's fix an arbitrary $k^{*} \geq 1$; we know that for any $k \geq k^{*}$ the point $x_{n_{k}}$ lies in $V_{n_{k^{*}}}$, so also the limit \bar{x} lies in $V_{n_{k^{*}}}$ because $V_{n_{k^{*}}}$ is closed and hence contains all of its limit points. We have shown that \bar{x} lies in $V_{n_{k^{*}}}$ for any $k^{*} \geq 1$. As $\left\{n_{k}\right\}_{k \geq 1}$ is an unbounded sequence of natural numbers, we have that

$$
\bar{x} \in \bigcap_{k \geq 1} V_{n_{k}}=V_{\infty}
$$

As $x_{n_{k}} \rightarrow \bar{x}$ and f is continuous, the sequence of real numbers $\left\{f\left(x_{n_{k}}\right)\right\}_{k \geq 1}$ converges to $f(\bar{x})$. But we knew that the limit had to be the right hand side in (1). This means that

$$
\inf \left\{\sup _{V_{n}} f \mid n \geq 1\right\}=f(\bar{x}) \leq \sup _{V_{\infty}} f
$$

And this shows ≥ 1 in (1).
Now we go to the situation of the exercise. We have our compact metric space X with distance $d: X \times X \rightarrow \mathbb{R}$ and a sequence of nested closed subsets $V_{1} \supseteq V_{2} \supseteq \cdots$. One can show that d is a continuous function when $X \times X$ is equipped with the product topology by considering the following inequality, which is true for any $x_{1}, x_{2}, y_{1}, y_{2} \in X$,

$$
\begin{aligned}
\left|d\left(x_{1}, y_{1}\right)-d\left(x_{2}, y_{2}\right)\right| & =\left|d\left(x_{1}, y_{1}\right)-d\left(x_{1}, y_{2}\right)+d\left(x_{1}, y_{2}\right)-d\left(x_{2}, y_{2}\right)\right| \\
& \leq\left|d\left(x_{1}, y_{1}\right)-d\left(x_{1}, y_{2}\right)\right|+\left|d\left(x_{1}, y_{2}\right)-d\left(x_{2}, y_{2}\right)\right| \\
& \leq d\left(y_{1}, y_{2}\right)+d\left(x_{1}, x_{2}\right) \\
& =d_{X \times X}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right),
\end{aligned}
$$

where $d_{X \times X}$ is the distance defined in Exercise 1 in the Extra Problem Sheet with $p=1$.

Now one sees that

$$
\operatorname{diam}\left(V_{n}\right)=\sup _{V_{n} \times V_{n}} d
$$

for any n. By applying the lemma above to the function $d: X \times X \rightarrow \mathbb{R}$ and to the sequence $V_{1} \times V_{1} \supseteq V_{2} \times V_{2} \supseteq \cdots$ of closed subsets of the compact metric space $X \times X$ we get the required equality.

Exercise 4. We have seen in Problem Sheet 6, Exercise 3, point (1) that any two paths $f(t), g(t)$ in \mathbb{R}^{2} with the same endpoints x_{0}, x_{1} are homotopic, with the homotopy from $g(t)$ to $f(t) H:[0,1] \times[0,1] \rightarrow \mathbb{R}^{2}$ given by

$$
H(s, t)=s \cdot f(t)+(1-s) \cdot g(t)
$$

In the case of the exercise we have

$$
f(0)=g(0)=(1,0) \quad f(1)=g(1)=(-1,0)
$$

so the general fact we proved last week can be applied.

Exercise 5.

(1) Let x and y be two points in D. As D is star shaped, the straight segments $\gamma_{1}(t)=t \cdot x+(1-t) \cdot x_{0}$ and $\gamma_{2}(t)=t \cdot x_{0}+(1-t) \cdot y$ are contained in D and they are obviously continuous paths connecting x to x_{0} and x_{0} to y. Then consider the path $\gamma:[0,1] \rightarrow D$ defined by

$$
\gamma(t)=\left\{\begin{array}{l}
\gamma_{1}(2 t)=(1-2 t) \cdot x+2 t \cdot x_{0} \text { for } \mathrm{t} \in[0,1 / 2] \\
\gamma_{2}(2 t-1)=(2-2 t) \cdot x_{0}+(2 t-1) \cdot y \text { for } \mathrm{t} \in[1 / 2,1]
\end{array}\right.
$$

this is clearly continuous and connects x and y. As they were arbitrary, this means D is path connected.
(2) Let $\gamma:[0,1] \rightarrow D$ be a path. We want to shrink γ to the constant path $\gamma_{0}: t \mapsto x_{0}$, as $t \in[0,1]$. Consider the homotopy $H:[0,1] \times[0,1] \rightarrow D$ defined by

$$
H(t, s)=(1-s) \gamma(t)+s x_{0}
$$

for any $s, t \in[0,1]$. One should prove that H is continuous in the same way as in Exercise 3 in Problem Sheet 6. It is clear that $H(\cdot, 0)=\gamma$, $H(\cdot, 1)=\gamma_{0}$.

