
Solutions to Problem Sheet 7

Exercise 1. Let us consider the sequence {xn : = 1/n}n>0. For any n, xn ∈
(0, 1), but 0, which is the limit of the sequence, is not in the open interval. Moreover,
as the sequence converges to 0, any subsequence {xnk

} will converge again to 0. We
then found a sequence {xn}n>0 is in (0, 1) which does not admit any subsequence
which converges in (0, 1). Thus the open interval is not sequentially compact.

Exercise 2.

(⇒) If X is compact, then any open cover has an finite open sub-cover. In
particular, consider for ε > 0 the open cover {Bε(x);x ∈ X}. Thus X is
totally bounded.

Now, to show that X is complete we need to show that any Cauchy
sequence is convergent. X compact ⇐⇒ X sequentially compact, so given
{xn}n>0 there exists a subsequence {xnk

} ⊆ {xn} which converges to a
certain x ∈ X. But in fact {xn} itself convergent to that x ∈ X. Indeed,
fix ε > 0, then for any n, nk > N(ε) we have

dX(xn, x) ≤ dX(xn, xnk
) + dX(xnk

, x) < ε/2 + ε/2

where the first is the triangular inequality and the second follows from the
fact that the sequence is Cauchy and the subsequence is convergent.

(⇐) Conversely, assume X is totally bounded. For metric spaces, sequential
compactness is equivalent to compactness. Thus we aim to show that
X is sequentially compact. Let (xn)n≥0 be a sequence in X. We aim to
show it has a convergent subsequence.

As X is totally bounded that there exists a finite set of indices, say

n1, . . . , nk such that X =
⋃k
i=1B1(xni

). By pigeon-hole principle, one
of the balls must contain infinitely many terms of (xn). This defines a
subsequence of (xn) which we call (x1n). By definition (x1n) is contained
in a ball of radius 1.

We apply the same argument to balls of radius 1/2 and (x1n). This gives
a subsequence (x2n) contained in a ball of radius 1/2. Continuing in the
same fashion we obtain subsequences (xkn) contained in balls of radius 1/k.

Now, use a diagonal argument. For k ≥ 0, define x∗k := xkk. We claim
that (x∗k)k≥0 is a convergent subsequence. Indeed, let ε > 0. Take N such
that 1/N < ε then for any k ≥ N , all the xk’s are contained in a ball of
radius 1/N < ε. So (x∗k)k≥0 is Cauchy, and hence convergent. Q.E.D.

Exercise 3. We begin by proving the following lemma.

Lemma. Let X be a compact metric space and V1 ⊇ V2 ⊇ · · · be a sequence of
nested closed subsets of X. Consider the intersection

V∞ =

∞⋂
n=1

Vn.

If f : X → R is a continuous function then

(1) sup
V∞

f = inf

{
sup
Vn

f

∣∣∣∣n ≥ 1

}
.
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Proof of the Lemma. If one of the Vn is empty, then V∞ is empty and then
supV∞ f = −∞ and supVn

f = −∞. Thus the equality is obvious.
We may assume that Vn is non-empty for any n. By Exercise 3 in Problem

Sheet 4 we know that V∞ is non-empty. For any n ≥ 1, we have that V∞ ⊆ Vn
which implies that supV∞ f ≤ supVn

f ; since this holds for any n we have shown
the inequality ≤ in (1).

Now we want to prove the inequality ≥ in (1). Now let us fix n ≥ 1. As Vn
is closed in the compact topological space X, we know that Vn is compact. This
implies that f attains maximum over Vn; in other words there exists xn ∈ Vn such
that f(xn) = supVn

f . We have constructed the sequence {xn}n≥1. We notice that
the sequence {f(xn)}n≥1 is (weakly) decreasing sequence of real numbers converging
to the right hand side in (1).

As X is a compact metric space, it is sequentially compact. Therefore it is
possible to extract a convergent subsequence {xnk

}k≥1 from the sequence {xn}n≥1.
Let x̄ ∈ X denote the limit of this convergent subsequence. We want to prove that
x̄ lies in V∞. Let’s fix an arbitrary k∗ ≥ 1; we know that for any k ≥ k∗ the point
xnk

lies in Vnk∗ , so also the limit x̄ lies in Vnk∗ because Vnk∗ is closed and hence
contains all of its limit points. We have shown that x̄ lies in Vnk∗ for any k∗ ≥ 1.
As {nk}k≥1 is an unbounded sequence of natural numbers, we have that

x̄ ∈
⋂
k≥1

Vnk
= V∞.

As xnk
→ x̄ and f is continuous, the sequence of real numbers {f(xnk

)}k≥1 con-
verges to f(x̄). But we knew that the limit had to be the right hand side in (1).
This means that

inf

{
sup
Vn

f

∣∣∣∣n ≥ 1

}
= f(x̄) ≤ sup

V∞

f.

And this shows ≥ 1 in (1). �

Now we go to the situation of the exercise. We have our compact metric space X
with distance d : X×X → R and a sequence of nested closed subsets V1 ⊇ V2 ⊇ · · · .
One can show that d is a continuous function when X × X is equipped with the
product topology by considering the following inequality, which is true for any
x1, x2, y1, y2 ∈ X,

|d(x1, y1)− d(x2, y2)| = |d(x1, y1)− d(x1, y2) + d(x1, y2)− d(x2, y2)|
≤ |d(x1, y1)− d(x1, y2)|+ |d(x1, y2)− d(x2, y2)|
≤ d(y1, y2) + d(x1, x2)

= dX×X ((x1, y1), (x2, y2)) ,

where dX×X is the distance defined in Exercise 1 in the Extra Problem Sheet with
p = 1.

Now one sees that

diam(Vn) = sup
Vn×Vn

d

for any n. By applying the lemma above to the function d : X ×X → R and to the
sequence V1 × V1 ⊇ V2 × V2 ⊇ · · · of closed subsets of the compact metric space
X ×X we get the required equality.

Exercise 4. We have seen in Problem Sheet 6, Exercise 3, point (1) that any
two paths f(t), g(t) in R2 with the same endpoints x0, x1 are homotopic, with the
homotopy from g(t) to f(t) H : [0, 1]× [0, 1]→ R2 given by

H(s, t) = s · f(t) + (1− s) · g(t).
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In the case of the exercise we have

f(0) = g(0) = (1, 0) f(1) = g(1) = (−1, 0)

so the general fact we proved last week can be applied.

Exercise 5.

(1) Let x and y be two points in D. As D is star shaped, the straight segments
γ1(t) = t · x+ (1− t) · x0 and γ2(t) = t · x0 + (1− t) · y are contained in D
and they are obviously continuous paths connecting x to x0 and x0 to y.
Then consider the path γ : [0, 1]→ D defined by

γ(t) =

{
γ1(2t) = (1− 2t) · x+ 2t · x0 for t ∈ [0, 1/2]

γ2(2t− 1) = (2− 2t) · x0 + (2t− 1) · y for t ∈ [1/2, 1]

this is clearly continuous and connects x and y. As they were arbitrary,
this means D is path connected.

(2) Let γ : [0, 1] → D be a path. We want to shrink γ to the constant path
γ0 : t 7→ x0, as t ∈ [0, 1]. Consider the homotopy H : [0, 1] × [0, 1] → D
defined by

H(t, s) = (1− s)γ(t) + sx0

for any s, t ∈ [0, 1]. One should prove that H is continuous in the same
way as in Exercise 3 in Problem Sheet 6. It is clear that H(·, 0) = γ,
H(·, 1) = γ0.


