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SERGEY GALKIN

Abstract. This text has non-empty intersection with my talk Non-commutative mirror symmetry
on July 13, 2011 at HMS and CT workshop in Split. I’ll discuss natural importance of positivity
and convexity. Obro vector and characterization of spectra of maximal radius I added in October.

1. Laurent polynomials and random walks.

Let N be a lattice with dual M = Hom(M,Z).Let u be coordinates on affine space M ⊗Z A1

and x = eu be coordinates on the torus T = Hom(N,Gm) = M ⊗Z Gm. Note that map exp is an
isomorphism between domains where all u are real and all x are real positive, further we denote
this domain by V .

Consider a Laurent polynomial W with complex coefficients

(1) W =
∑
l∈N

alx
l =

∑
l∈N

ale
un

Denote A =
∑
|al|. Note that all coefficients al are real and non-negative ⇐⇒ A = W (1). In

this case we can consider restriction of W to V as a function of real positive argument x and A
as its particular value. Furthermore in case A = 1 one may interpret Laurent polynomial W as a
random walk in the lattice M : coefficient al is probability to go in direction m and each next step
is independent of the past. In case A 6= 1 function W is simply a rescale of the probabilistic one.

Assume additionally that the origin 0 ∈ N lies in the interior of Newton polytope of W (so
random walker has some chance to come back to the origin).

Remark 2. I consider properties of positivity and convexity (and their corollaries discussed below)
as an Archimedean counterpart to p-crystal properties.

Definition 3. We say that point x0 ∈ (C∗)n is a usual critical point of W if dW |x=x0 = 0. We
say that c ∈ C is a usual critical value of W if c = W (x0) for some usual critical point x0.

Lemma 4. Function W has a unique critical point on V and it is the global minimum.

Proof. Since 0 is contained in the interior of the Newton polytope for every direction |u| → ∞ one
of the monomials of W also goes to +∞. Since all coefficients are positive W goes to +∞ as well.
This implies W has at least one minimum on V .

Note that W is a convex function in coordinates ti: each monomial etm is convex, so sum of
monomials with positive coefficients is also convex. Since convex functions has at most one critical
point we are done. �

Let Wmin be the minimum of W on real positive part i.e. the value of W at the unique critical
point with real positive coordinates.

Proposition 5. For W0 > Wmin the fibers W−1(W0) ⊂ V are diffeomorphic to (n−1)-dimensional
sphere Sn−1.
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Proof. Once we know the lemma above apply the standard argument from Morse theory. �
We point that uniqueness of real positive critical point will also follow from the arguments below,

where we give an estimate of the respective critical value Wmin.
Consider n-cycle Γ = {|x| = 1} and a holomorphic volume form ω = 1

(2πi)n

∏
dxi
xi

= 1
(2πi)n

∏
dti

on n-dimensional complex torus (C∗)n.

Definition 6. For Laurent polynomial W denote by Tr(W ) its constant term
∫

Γ
W . Let

Traces(W ) be the set of natural numbers k such that Tr(W k) 6= 0 (k = 0 is included), and
index r(W ) be the greatest common divisor of all elements in Traces(W ). Define G-function and

Ĝ-function as (exponential) generating function for Tr(W k):

ĜW =
∑
k>0

Tr(W k)tk =

∫
Γ

ω

1− tW
(7)

GW =
∑
k>0

Tr(W k)
tk

k!
=

∫
Γ

etWω(8)

Number Tr(W k) can be interpreted as probability to be back at the origin after k independent

steps, so function ĜW is generating function for these probabilities.

Proposition 9. For positive W1,W2 we have Tr(W1 ·W2) > Tr(W1) · Tr(W2).

Corollary 10. The set Traces(W ) is an additive monoid: if a, b ∈ Traces(W ) then (a + b) ∈
Traces(W ). This implies that there is some number n0 such that for all n > n0 number r(W )n
belongs to Traces(W ).

Denote by R = RW radius of convergence of ĜW , and define invariant T = TW = T (W ) = 1
R

.

Lemma 11. Power series GW (t) exponentially converge everywhere on complex line and power

series ĜW (t) have positive radius of convergence R and T 6
∑
|al|.

Proof. In case all coefficients al are real non-negative one can use “probability is bounded by 1”
argument: since W is a Laurent polynomial with real positive coefficients, W k is also a Laurent
polynomial with real positive coefficients, so W k equals to sum of positive monomials which are
positive evaluated at any positive point, and Tr(W k) is one particular term, so it is bounded by

the sum which is Ak. This implies T = limk→∞ Tr(W
k)

1
k 6 limk→∞(Ak)

1
k = A. Case where some

coefficients have non-zero argument can be absolutely bounded by the positive case. Exponential
convergence of GW immideately follows from convergence of ĜW . �

Lemma 12. If ĜW =
∑

n>0 gnt
n then ĜWk =

∑
n>0 gknt

n.

Clearly ĜW is Laplace transform of GW .

Lemma 13 (Dutch trick). Function ĜW is a period for the family 1 − tW = 0 of hypersurfaces
in the torus (C∗)n.

Definition 14. Define spectrum of W as the set of inverses of critical points of ĜW .

Lemma 15. Spectrum of Laurent polynomial W in the sense of definition 14 contains all usual
critical values of W in the sense of definition 3.
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Proof. �
Lemma 13 implies that T is the maximal absolute value of all critical values of W (in a broad

sense - including values at critical points outside the torus (C∗)n).

By Cauchy-Hadamard formula T = limk→∞ Tr(W
k)

1
k .

Proposition 16. There is an upper bound T 6 W (α) for any real positive α.

Proof. Lemma 11 implies T 6 A = W (1). On the other hand for any real positive α Laurent

polynomial W ′(x) = W (αx) has the same Ĝ-function (since Jacobian of the coordinate change
equals one). However W ′(1) = W (α). So same argument as above shows that T 6 W (α) for any
real positive n-tuple α. �

Proposition above shows the inequality

(17) T 6 Wmin

On the other hand T equals to maximal absolute value of all complex critical values of W . In
particular this implies there are no other critical points of W on Rn except for the global minimum.

This implies that positive Laurent polynomials have a unique ”canonical” real positive coordi-
nates – namely coordinates where the unique real positive critical point is (1, 1, . . . , 1). Indeed this
fixes a “translational” symmetry of the torus (ti → ti + bi or xi → xi × ai), however there is still
some “rotational” symmetry possible (which preserves the set of coefficients of W ), and in fact
these symmetries can be further exploited (see below).

Definition 18. In case a critical point of positive Laurent polynomial W is ti = 0 we say that W
is a balanced Laurent polynomial and ti are balanced coordinated.

Definition 19. For Laurent polynomial W =
∑
anx

m define its Obro vector as Obro(W ) =∑
m∈M an · m. Probabilistic interpretation of Obro vector is the average drift of random walker

per one step. And the third interpretation: Obro vector is proportional to the centre of mass of a
system of point particles positioned at the lattice points m with respective masses an.

Proposition 20. Positive Laurent polynomial W is balanced ⇐⇒ its Obro vector vanishes
Obro(W ) = 0 ∈M ⇐⇒ T (W ) = W (1).

Proof. Note that Obro vector equals to de Rham differential of W evaluated at x = 1 under natural
isomorphism T ∗(1,...,1)Gm(R) 'M ⊗ R : Obro(W ) = dW |x=1. �

This immediately implies that

Proposition 21. All balanced (maybe non-positive) Laurent polynomials form a subalgebra in
algebra of all Laurent polynomials.

Proof. Indeed the map W → dW |x=1 is linear and product of balanced polynomials is balanced
by Leibniz rule. In fact balanced polynomials satisfying W (1) = 0 form an ideal in the ring of
balanced polynomials and this ideal is the square of the ideal of Laurent polynomials vanishing at
1. �

Corollary 22. Map W → T (W ) restricted to balanced positive Laurent polynomials coincides with
homomorphism of rings W → W (1). So if W1 and W2 are balanced Laurent polynomials and α1, α2

are positive numbers then T (α1W1+α2W2) = α1T (W1)+α2T (W2) and T (W1W2) = T (W1)·T (W2).

Definition 23. Define index r(W ) as the greatest common divisor of natural numbers n such that
Tr(W k) 6= 0 (index of constant function is defined to be ∞).
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Remark 24. Index r(W ) can be also characterized as the greatest number r such that ĜW (e
2πi
r t) =

ĜW (t). or in other words ĜW (t) = ĜW r(tr). From wandering drunkard’s point of view this means
that is return to the origin is possible only in number of steps divisible by r.

Lemma 25. Indices of W and its powers are related as follows: r(W k) = r(W )
gcd(k,r(W ))

. In particular

r(W r(W )) = 1.

Theorem 26. Complex number T ′ such that |T ′| = TW is an element of spectrum of W ⇐⇒
T ′r = T r i.e. T ′ = T · e

2πip
r(W ) for some integer p.

Proof. Since the spectrum is invariant of ĜX the the inclusion statement follows from definition of
index. Let us prove that other points on the circle of radius T do not lie in the spectrum. Lemmas
25 and ?? applied to W and W r(W ) reduces the problem to the case r(W ) = 1.
�
To be continued...

2. Invariant T of Fano varieties and mirror symmetry.

For Fano variety X denote by JX its Givental’s J-function (ev1)∗
z

z−ψ1
restricted to anticanonical

direction t = tc1(X) and z = 1. Consider GX =
∫

[X]
JX ∪ [pt] and its Fourier-Laplace transform

ĜX .

Definition 27 (See [2, 5]). Define spectra Spectra(X) 1 as the collection of inverses of all crit-

ical points of the function ĜX . Equivalently spectra of Fano variety is the collection of roots
of its quantum characteristic polynomial (characteristic polynomial of the operator of quantum
multiplication by c1(X)).

Definition 28. Define T (X) as inverse of radius convergence of ĜX . Equivalently, T (X) is max-
imal absolute value of elements in the spectrum of X.

Definition 29. We say that Laurent polynonial W reflects Fano variety X if GW = GX (or,

equivalently, ĜW = ĜX).
2

Example 30. Let X be a smooth toric Fano variety and vi — primitive generators on the rays
of its fan. Then Laurent polynomial W =

∑
xvi reflects X by results of Givental [4]. Further we

call this function W as the standard reflection for toric Fano variety X.

Question 31. We are going to address the following questions:

(1) What are the possible values of number T (X) for Fano varieties X.
(2) In particular, what are the bounds?
(3) How they depend on dimension?
(4) What are the values of T (X) for toric Fano varieties and how they differ from generic?

Theorem 32. For smooth toric Fano variety X there is an upper bound

T (X) 6 dimX + ρ(X) 6 3 dimX.

1Anticanonical spectrum in notations of [5].
2In such situation Przyjalkowski says that W is very weak Landau–Ginzburg model (mirror dual) to X.
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Proof. Consider the standard reflection W from example 30. We have T (X) = T (W ), by 16
T (W ) 6 W (1), finally W (1) equals to number of vertices in the fan of smooth toric variety and
this number equals dimX + ρ(X).

Inequality ρ(X) 6 2 dimX is proven in [1], and we’ll reproduce much simpler proof of Obro
from [7]. Consider special facet F — any facet whose cone contains Obro vector, and let fF be
a linear function on M that equals 1 on F . Note that

∑
v∈V ertices(X) fF (v) = fF (Obro(X)) > 0.

Any vertex v of X falls in one of three categories by sign of fF (v). If fF (v) > 0 then v is one
of d vertices of facet F , so fF (v) = 1 and

∑
v:fF (v)>0 fF (v) = d. Number of v with fF (v) < 0 is

bounded by d since fF (Obro(X)) > 0. Number of vertices v with fF (v) = 0 is also bounded by d
due to combinatorial reasons. Altogether number of vertices is bounded by d+ d+ d = 3d. �

3. Reconstructions.

Definition 33. Ano variety Y is a complement in a smooth Fano variety F to its smooth anti-
canonical hypersurface A ∈ | −KF |: Y ' F − A.

Lemma 34. If Y is Ano variety then H0(Y,O∗Y ) = C.

Proof. Any function f ∈ H0(Y,O∗Y ) can be considered as a rational function on F . Since functions
f and 1

f
are regular on Y their divisors of poles should be supported at A. However divisor of

poles of 1
f

is divisor of zeroes of f , so since A is irreducible function f doesn’t have any poles or

zeroes, so its a regular function on projective variety F that is a constant. �

Theorem 35. The respective Fano variety F and its anti-canonical Calabi–Yau section A can be
uniquely reconstructed from Ano variety Y .

Proof. �

Definition 36. Smooth variety U is called Ona variety if its canonical line bundle is trivial
KU = OU and it has a flat projective map to w : U → A1 with connected fibers, and generic fiber
is smooth.

Lemma 37. If Y is Ona variety then H0(Y,OY ) = C[w].

Theorem 38. The respective map w : Y → A1 from Ona variety to A1 can be uniquely (up to
automorphisms of A1) reconstructed from Ona variety U .

Proof. �

4. Laurent phenomenon.

5. Three incarnations and three levels.

All this story has 3 incarnations: C (for commutative or classical), Q (for quantized) and NC
(non-commutative [6]).

5.1. Potentials. C-potentials (of the usual commutative theory) are just usual Laurent poly-
nomials. We may consider Laurent polynomial as an element of a group ring of a free abelian
group.
Q-potentials (or quantized Laurent polynomials) are elements of the quantum torus i.e. group

ring of Heisenberg group. Sometimes it is more convenient to work with a double central extension
of Heisenberg group. Let q be the generator of the center of Heisenberg group.

Finally, NC-potentials are the noncommutative Laurent polynomials e.g. elements of a group
ring of a free group.
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5.2. G-functions. One defines the trace of a potential W =
∑
cgx

g as its constant term Tr(W ) =
c1 (where 1 is the identity element in the respective group).

In quantized setup one can also define the central trace as the sum of all central monomials
Tr(

∑
cgx

g) =
∑

n∈Z cqnq
n.

The name trace is partially motivated by the fact it vanishes on commutators i.e. Tr(ab) =
Tr(ba).
G-functions are defined as various generating functions for traces of powers of W , and can also

be thought as generalized characteristic polynomials. As well these generating series count the
probabilities to come in n steps to the origin for random walker on a respective group.

5.3. Coordinate change formulae. Assume we have some coordinate transformation (auto-
morphism of (skew-)field of fractions of group ring of group G). Additionally assume a Laurent
phenomenon: some potential W is mapped into another potential W ′.

Under which conditions the G-functions are preserved i.e. traces of powers of W remain the
same.

The commutative case is served by a coordinate change formula in integral: the Jacobian of the
transformation is identity ⇐⇒ the holomorphic volume form ω on torus is mapped into itself.

It is a delightful gift of quantization that in Q case any coordinate change that preserves q is
fine.

I don’t know under what conditions (if any) G-functions are preserved in NC setting.

6. Quantized and non-commutative random walks.

7. Appendix: Futaki-Mabuchi polynomial, degenerations, stabilities and
Kahler-Einstein metrics.

Acknowledgement. I am obliged to Cornelius Schmidt-Colinet, Sasha Getmanenko, Al
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