|
PALP id: |
3742 |
grdb id: |
524219 |
Integer points: |
[ 1 0 0 -3 -1 -5 -2 -3 -4 -1 -2 -3 -4 0 -1 -2 0 -1 -2 0 -1] [ 0 1 1 -2 0 -4 -1 -2 -3 0 -1 -2 -3 1 0 -1 0 -1 -2 0 -1] [ 0 0 2 -2 2 -2 1 0 -1 1 0 -1 -2 1 0 -1 1 0 -1 0 -1] |
Degree: |
24 |
Hilbert function: |
1 + 15 t + 65 t2 + 175 t3 + 369 t4 + 671 t5 + 1105 t6 + 1695 t7 + 2465 t8 + 3439 t9 + 4641 t10 + ... |
Polynomials: |
Period sequence |
Fano variety |
Laurent polynomial |
36 |
rank 3, number 7 |
y*z2 + 2*y*z + x + y + 2*z + x-1*z2 + 6*x-1*z + 5*x-1 + 4*x-1*y-1 + 4*x-2*y-1*z + 2*x-1*y-1*z-1 + 10*x-2*y-1 + 3*x-2*y-1*z-1 + 2*x-2*y-2*z-1 + 6*x-3*y-2 + 7*x-3*y-2*z-1 + x-3*y-2*z-2 + 4*x-4*y-3*z-1 + 2*x-4*y-3*z-2 + x-5*y-4*z-2 |
60 |
rank 2, number 18 |
y*z2 + 2*y*z + x + y + 2*z + x-1*z2 + 4*x-1*z + 3*x-1 + 4*x-1*y-1 + 4*x-2*y-1*z + 2*x-1*y-1*z-1 + 7*x-2*y-1 + 2*x-2*y-1*z-1 + 2*x-2*y-2*z-1 + 6*x-3*y-2 + 6*x-3*y-2*z-1 + x-3*y-2*z-2 + 4*x-4*y-3*z-1 + 2*x-4*y-3*z-2 + x-5*y-4*z-2 |
|
Facets: |
Facet |
Multiplicity |
Admissible lattice Minkowksi decompositions |
|
1 |
|
|
3 |
irreducible and admissible
|
|
1 |
|
|
1 |
|
|