|
PALP id: |
4168 |
grdb id: |
264855 |
Integer points: |
[ 1 0 0 -2 -2 2 -4 2 -3 -2 -1 0 1 -3 -2 -1 0 1 -1 -1 0 1 -1 0 1] [ 0 1 0 2 1 -3 2 -4 1 0 -1 -2 -3 2 1 0 -1 -2 1 0 -1 -2 1 0 -1] [ 0 0 1 -1 -2 2 -3 3 -2 -1 0 1 2 -2 -1 0 1 2 0 -1 0 1 -1 0 1] |
Degree: |
12 |
Hilbert function: |
1 + 9 t + 35 t2 + 91 t3 + 189 t4 + 341 t5 + 559 t6 + 855 t7 + 1241 t8 + 1729 t9 + 2331 t10 + ... |
Polynomials: |
Period sequence |
Fano variety |
Laurent polynomial |
11 |
rank 2, number 6 |
x + y + 2*x*y-1*z + z + x2*y-3*z2 + 2*x*y-2*z2 + x2*y-4*z3 + 2*x-1*y + 4*x*y-2*z + 8*y-1*z + 6*x*y-3*z2 + 2*x-1*y*z-1 + x-2*y2*z-1 + 6*y-1 + 12*x-1 + 15*y-2*z + 4*x-1*z-1 + 8*x-2*y*z-1 + 20*x-1*y-1 + x-2*y*z-2 + 2*x-3*y2*z-2 + 15*x-2*z-1 + 6*x-3*y*z-2 + x-4*y2*z-3 |
22 |
rank 3, number 1 |
x + y + 3*x*y-1*z + z + x2*y-3*z2 + 2*x*y-2*z2 + x2*y-4*z3 + 2*x-1*y + 4*x*y-2*z + 8*y-1*z + 6*x*y-3*z2 + 3*x-1*y*z-1 + x-2*y2*z-1 + 6*y-1 + 12*x-1 + 15*y-2*z + 4*x-1*z-1 + 8*x-2*y*z-1 + 20*x-1*y-1 + x-2*y*z-2 + 2*x-3*y2*z-2 + 15*x-2*z-1 + 6*x-3*y*z-2 + x-4*y2*z-3 |
7 |
rank 1, V12 |
x + y + 2*x*y-1*z + z + x2*y-3*z2 + 2*x*y-2*z2 + x2*y-4*z3 + 2*x-1*y + 4*x*y-2*z + 8*y-1*z + 6*x*y-3*z2 + 3*x-1*y*z-1 + x-2*y2*z-1 + 6*y-1 + 12*x-1 + 15*y-2*z + 4*x-1*z-1 + 8*x-2*y*z-1 + 20*x-1*y-1 + x-2*y*z-2 + 2*x-3*y2*z-2 + 15*x-2*z-1 + 6*x-3*y*z-2 + x-4*y2*z-3 |
7 |
rank 1, V12 |
x + y + 3*x*y-1*z + z + x2*y-3*z2 + 2*x*y-2*z2 + x2*y-4*z3 + 2*x-1*y + 4*x*y-2*z + 8*y-1*z + 6*x*y-3*z2 + 2*x-1*y*z-1 + x-2*y2*z-1 + 6*y-1 + 12*x-1 + 15*y-2*z + 4*x-1*z-1 + 8*x-2*y*z-1 + 20*x-1*y-1 + x-2*y*z-2 + 2*x-3*y2*z-2 + 15*x-2*z-1 + 6*x-3*y*z-2 + x-4*y2*z-3 |
|
Facets: |
Facet |
Multiplicity |
Admissible lattice Minkowksi decompositions |
|
1 |
irreducible and admissible
|
|
2 |
|
|
1 |
|
|
1 |
irreducible and admissible
|
|
1 |
|
|