|  | PALP id: | 4168 | 
| grdb id: | 264855 | 
| Integer points: | [ 1  0  0 -2 -2  2 -4  2 -3 -2 -1  0  1 -3 -2 -1  0  1 -1 -1  0  1 -1  0  1] [ 0  1  0  2  1 -3  2 -4  1  0 -1 -2 -3  2  1  0 -1 -2  1  0 -1 -2  1  0 -1]
 [ 0  0  1 -1 -2  2 -3  3 -2 -1  0  1  2 -2 -1  0  1  2  0 -1  0  1 -1  0  1]
 | 
| Degree: | 12 | 
| Hilbert function: | 1 + 9 t + 35 t2 + 91 t3 + 189 t4 + 341 t5 + 559 t6 + 855 t7 + 1241 t8 + 1729 t9 + 2331 t10 + ... | 
| Polynomials: | 
| Period sequence | Fano variety | Laurent polynomial |  
| 11 | rank 2, number 6 | x + y + 2*x*y-1*z + z + x2*y-3*z2 + 2*x*y-2*z2 + x2*y-4*z3 + 2*x-1*y + 4*x*y-2*z + 8*y-1*z + 6*x*y-3*z2 + 2*x-1*y*z-1 + x-2*y2*z-1 + 6*y-1 + 12*x-1 + 15*y-2*z + 4*x-1*z-1 + 8*x-2*y*z-1 + 20*x-1*y-1 + x-2*y*z-2 + 2*x-3*y2*z-2 + 15*x-2*z-1 + 6*x-3*y*z-2 + x-4*y2*z-3 |  
| 22 | rank 3, number 1 | x + y + 3*x*y-1*z + z + x2*y-3*z2 + 2*x*y-2*z2 + x2*y-4*z3 + 2*x-1*y + 4*x*y-2*z + 8*y-1*z + 6*x*y-3*z2 + 3*x-1*y*z-1 + x-2*y2*z-1 + 6*y-1 + 12*x-1 + 15*y-2*z + 4*x-1*z-1 + 8*x-2*y*z-1 + 20*x-1*y-1 + x-2*y*z-2 + 2*x-3*y2*z-2 + 15*x-2*z-1 + 6*x-3*y*z-2 + x-4*y2*z-3 |  
| 7 | rank 1, V12 | x + y + 2*x*y-1*z + z + x2*y-3*z2 + 2*x*y-2*z2 + x2*y-4*z3 + 2*x-1*y + 4*x*y-2*z + 8*y-1*z + 6*x*y-3*z2 + 3*x-1*y*z-1 + x-2*y2*z-1 + 6*y-1 + 12*x-1 + 15*y-2*z + 4*x-1*z-1 + 8*x-2*y*z-1 + 20*x-1*y-1 + x-2*y*z-2 + 2*x-3*y2*z-2 + 15*x-2*z-1 + 6*x-3*y*z-2 + x-4*y2*z-3 |  
| 7 | rank 1, V12 | x + y + 3*x*y-1*z + z + x2*y-3*z2 + 2*x*y-2*z2 + x2*y-4*z3 + 2*x-1*y + 4*x*y-2*z + 8*y-1*z + 6*x*y-3*z2 + 2*x-1*y*z-1 + x-2*y2*z-1 + 6*y-1 + 12*x-1 + 15*y-2*z + 4*x-1*z-1 + 8*x-2*y*z-1 + 20*x-1*y-1 + x-2*y*z-2 + 2*x-3*y2*z-2 + 15*x-2*z-1 + 6*x-3*y*z-2 + x-4*y2*z-3 |  | 
| Facets: | 
| Facet | Multiplicity | Admissible lattice Minkowksi decompositions |  
|  | 1 | irreducible and admissible |  
|  | 2 |   |  
|  | 1 |   |  
|  | 1 | irreducible and admissible |  
|  | 1 |   |  |