|
PALP id: |
4310 |
grdb id: |
520191 |
Integer points: |
[ 1 0 0 -2 3 -5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 -3 -2 -1 0 1 -1 -2 -1 0 1 2 -1 0 1] [ 0 1 0 2 -6 2 1 0 -1 -2 -3 -4 -5 2 1 0 -1 -2 -3 -4 2 1 0 -1 -2 1 1 0 -1 -2 -3 1 0 -1] [ 0 0 1 -1 4 -4 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -2 -1 0 1 2 0 -2 -1 0 1 2 -1 0 1] |
Degree: |
10 |
Hilbert function: |
1 + 8 t + 30 t2 + 77 t3 + 159 t4 + 286 t5 + 468 t6 + 715 t7 + 1037 t8 + 1444 t9 + 1946 t10 + ... |
Polynomials: |
Period sequence |
Fano variety |
Laurent polynomial |
9 |
rank 1, V10 |
x + y + 3*x*y-1*z + z + 2*x2*y-3*z2 + 3*x*y-2*z2 + 3*x2*y-4*z3 + x3*y-6*z4 + 2*x-1*y + 8*x*y-2*z + 12*y-1*z + 18*x*y-3*z2 + 8*x2*y-5*z3 + 3*x-1*y*z-1 + x-2*y2*z-1 + 12*y-1 + 18*x-1 + 45*y-2*z + 28*x*y-4*z2 + 8*x-1*z-1 + 12*x-2*y*z-1 + 60*x-1*y-1 + 56*y-3*z + 2*x-2*y*z-2 + 3*x-3*y2*z-2 + 45*x-2*z-1 + 70*x-1*y-2 + 18*x-3*y*z-2 + 56*x-2*y-1*z-1 + 3*x-4*y2*z-3 + 28*x-3*z-2 + 8*x-4*y*z-3 + x-5*y2*z-4 |
|
Facets: |
Facet |
Multiplicity |
Admissible lattice Minkowksi decompositions |
|
1 |
|
|
1 |
irreducible and admissible
|
|
1 |
|
|
2 |
|
|